Aplicações da Supercondutividade - O skate voador da Lexus

domingo, 5 de julho de 2015

Novo recorde de campo magnético à vista (New Superconducting Magnet already at a record 27 Tesla and will reach 32 Tesla in 2016)



Esta bobina que usa o supercondutor YBCO ajudou o MagLab a estabelecer um novo recorde mundial de magnetos supercondutores: 27 teslas.


Construído com supercondutores novos e tradicionais, o ímã atingiu um campo de 27 teslas em 5 de junho, em um teste que superou as expectativas dos designers. O ímã é uma versão menor de um ainda mais poderoso com conclusão prevista para o próximo ano - um de 32 Tesla que será substancialmente mais forte do que qualquer ímã construído até à data.
        Tesla é uma medida da intensidade do campo magnético: um ímã típico usado em um aparelho de ressonância magnética é de 2 a 3 Tesla. O valor de 27 Tesla é 3,5 maior do que o ímã supercondutor mais forte em operação atualmente (em Lyon, França) e 1 Tesla mais forte do que um magneto supercondutor de teste construída no início deste ano na Coreia do Sul.


Fita de YBCO enrolada em discos (panquecas) para fazer as bobinas.


O ímã supercondutor mais forte do mundo tem atualmente uma força de campo de 23,5 Tesla. Quando este ambicioso projeto for concluído em 2016, o magneto supercondutor mais forte do planeta estará alojado no MagLab. Com 32 Tesla, dará um salto gigante em uma tecnologia que, desde 1960, tem visto pequenos passos de crescimento de 0,5 a 1 Tesla. Em junho deste ano, um teste com o ímã de 32 Tesla estabeleceu um novo recorde mundial de 27 Teslas para um ímã supercondutor.
        O instrumento inovador irá reduzir consideravelmente o custo de experimentos científicos e tornar a investigação de alto campo acessível a mais cientistas.
Devido em grande parte ao ambiente mais silencioso que um ímã supercondutor oferece, os 32 Tesla irá ajudar os cientistas a abrir novos caminhos na ressonância magnética nuclear, ressonância magnética eletrônica, sólidos moleculares, estudos de oscilação quântica de metais complexos, efeito Hall quântico etc.
       O YBCO é um supercondutor de alta temperatura (HTS) formado por óxido de cobre, ítrio e bário. HTS são supercondutores a temperaturas mais elevadas do que seus primos convencionais, o que significa uma grande vantagem. Essa propriedade também lhes permite permanecerem supercondutores a campos magnéticos muito mais elevados do que os supercondutores convencionais. O ímã testado apresenta uma mistura de fita de YBCO e fio de supercondutores convencionais.
       Huub Weijers, diretor do projeto, testou uma série de bobinas magnéticas ao longo dos anos e comentou: “Esta é a primeira vez com os protótipos que nós não tivemos algo que não estava certo. Toda vez havia um pedaço aqui ou ali, uma parte que não foi muito bem, que estava limitando-nos em geral. Desta vez, não houve tal irregularidade. Nós apenas atingimos o desempenho máximo do condutor”.
       O MagLab dispõe de vários instrumentos que são mais fortes do que 32 T, incluindo dois ímãs resistivos e o ímã híbrido de 45 T. Contudo, como supercondutor mais forte do mundo, o de 32 T será capaz de executar mais horas, mais barato de operar, e oferece vantagens importantes para alguns tipos de experimentos. Supercondutores criam campos mais estáveis, ‘mais silenciosos’ do que ímãs resistivos (que dependem de corrente convencional) que são importantes para experimentos em ressonância magnética nuclear, ressonância magnética eletrônica e outras áreas de pesquisa que requerem medidas mais sensíveis. A estimativa é que todo o sistema esteja pronto no primeiro semestre de 2016.
       Este será o primeiro ímã de alto campo à disposição dos pesquisadores que incorpora o YBCO, uma cerâmica supercondutora de alta temperatura crítica. Duas bobinas internas de YBCO, fabricadas no MagLab serão cercadas por um outsert comercial composto de três bobinas de nióbio-estanho e duas bobinas de nióbio-titânio.
       O novo ímã será mais atraente para os usuários cujos experimentos requerem menor ruído e tempos de execução mais longos do que os ímãs resistivos podem oferecer, enquanto a taxa relativamente rápida de 32 T/hora também permite muitas varreduras de campo por dia.



A equipe envolvida no projeto (da esquerda para a direita): Brent Jarvis, Huub Weijers (diretor de projeto), Denis Markiewicz, Tom Painter, Adam Voran, Steven Carter, Scott Gundloch e Bill Sheppard. Não retratado: Andy Gavrilin, Zach Johnson, Patrick Noyes e Youri Viouchkov.









Nenhum comentário:

Postar um comentário

Seu comentário será avaliado e só será exibido após aprovação.

Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!