Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador pares de Cooper. Mostrar todas as postagens
Mostrando postagens com marcador pares de Cooper. Mostrar todas as postagens

segunda-feira, 8 de junho de 2020

Acelerar corrente em supercondutores produz luz proibida

Com informações da BBC - 27/05/2020



Esta ilustração mostra a aceleração das supercorrentes por ondas de luz, o que dá acesso a uma nova classe de fenômenos quânticos, que poderão ser explorados em computação quântica, detecção e comunicação. Imagem: Jigang Wang/Iowa State University]


Um tipo de luz "que não deveria existir" - segundo as leis conhecidas das física - pode abrir as portas para um mundo ainda desconhecido.
Físicos da Universidade Estadual de Iowa, nos Estados Unidos, descobriram uma forma de acessar propriedades únicas da física quântica ao usar ondas de luz de alta frequência para acelerar a corrente trafegando por supercondutores, materiais que podem conduzir corrente elétrica sem resistência ou perda de energia.
Chirag Vaswani e seus colegas afirmam ter feito os primeiros experimentos para usar pulsos de luz em frequências de terahertz (trilhões de pulsos por segundo) para acelerar elétrons emparelhados, conhecidos como pares de Cooper, que se acredita serem os responsáveis pela supercondutividade.
Após rastrear a luz emitida pelos pares de elétrons acelerados, a equipe encontrou "emissões de luz do segundo harmônico", uma luz com o dobro da frequência de entrada usada para acelerar os elétrons.
“Essas emissões do segundo harmônico deveriam ser proibidas [pelas leis da física tradicional] em supercondutores. Isso vai contra o saber convencional,” disse o professor Jigang Wang.
A equipe afirma que essa "luz proibida" é "uma descoberta fundamental para a matéria quântica".
“A luz proibida nos dá acesso a uma classe exótica de fenômenos quânticos - que envolve a energia e as partículas na escala dos átomos - chamadas de precessões proibidas de pseudo-rotação de Anderson,” disse Ilias Perakis, membro da equipe.
A equipe usou uma ferramenta chamada espectroscopia quântica de terahertz, que permite visualizar e direcionar o fluxo de elétrons.
O processo emprega pulsos de luz laser a uma taxa de trilhões de pulsos por segundo, energia suficiente para acelerar supercorrentes e, com isso, tentar acessar novos estados quânticos da matéria. Foi justamente aí que veio a surpresa, na forma de harmônicos que não deveriam existir.
“Assim como os transistores gigahertz de hoje e os roteadores sem fio 5G substituíram as válvulas termiônicas há mais de meio século, os cientistas estão buscando um salto adiante nos princípios de projeto e em novos componentes, a fim de alcançar recursos quânticos de computação e comunicação,” disse Perakis. “Encontrar maneiras de controlar, acessar e manipular as características especiais do mundo quântico e conectá-las a problemas do mundo real é um grande impulso científico nos dias de hoje. A Fundação Nacional de Ciências incluiu estudos quânticos em suas '10 Grandes Ideias' para futuras pesquisas e desenvolvimentos críticos.”

Bibliografia:

Artigo: Terahertz Second-Harmonic Generation from Lightwave Acceleration of Symmetry-Breaking Nonlinear Supercurrents
Autores: Chirag Vaswani, Martin Mootz, Christopher Sundahl, Dinusha Herath Mudiyanselage, Jong-Hoon Kang, Xu Yang, Di Cheng, Chuankun Huang, Richard H. Kim, Zhaoyu Liu, Liang Luo, Ilias E. Perakis, Chang-beom Eom, Jigang Wang
Revista: Physical Review Letters
Vol.: 124, 207003
DOI: 10.1103/PhysRevLett.124.207003


quinta-feira, 30 de janeiro de 2020

Pesquisa revela novo estado da matéria: um par de Cooper metálico


por Kevin Stacey, Brown University


Pequenos orifícios em um material supercondutor de alta temperatura revelaram que os pares de Cooper, pares de elétrons que permitem a supercondutividade, também podem conduzir eletricidade da mesma maneira que os metais. Crédito: Valles lab / Brown University


Durante anos, os físicos assumiram que os pares de Cooper, pares de elétrons que permitem aos supercondutores conduzir eletricidade sem resistência, eram pôneis de dois truques. Os pares deslizam livremente, criando um estado supercondutor ou criam um estado isolante, bloqueando o material, incapaz de se mover.
Em novo artigo publicado na Science , uma equipe de pesquisadores mostrou que os pares de Cooper também podem conduzir eletricidade com certa resistência, como fazem os metais comuns. Os resultados descrevem um estado inteiramente novo da matéria, dizem os pesquisadores, que exigirá uma nova explicação teórica.
“Havia evidências de que esse estado metálico surgiria nos filmes finos supercondutores à medida que eram resfriados em direção à temperatura supercondutora, mas se esse estado envolvia ou não pares de Cooper era uma questão em aberto”, disse Jim Valles, professor de física da Brown University e autor do estudo. “Desenvolvemos uma técnica que nos permite testar essa pergunta e mostramos que, de fato, os pares de Cooper são responsáveis ​​pelo transporte de carga nesse estado metálico. O interessante é que ninguém tem certeza de como eles fazem isso. Portanto, essa descoberta exigirá trabalho teórico e experimental para entender exatamente o que está acontecendo”.
Os pares de Cooper agem como bósons, que podem compartilhar o mesmo estado. Esse comportamento bosônico permite que os pares de Cooper coordenem seus movimentos com outros conjuntos de pares de maneira que reduz a resistência elétrica a zero.
Em 2007, Valles, trabalhando com Jimmy Xu, professor de engenharia e física da Brown University, mostrou que os pares de Cooper também podiam produzir estados isolantes e supercondutividade. Em materiais muito finos, em vez de se moverem em conjunto, os pares conspiram para permanecer no lugar, presos em pequenas ilhas dentro do material e incapazes de pular para a próxima ilha.
Para este novo estudo, Valles, Xu e colegas na China procuraram pares de Cooper no estado metálico não supercondutor, usando uma técnica semelhante à que revelou os pares de Cooper isolantes. A técnica envolve a padronização de um filme fino supercondutor - nesse caso, um supercondutor de alta temperatura - óxido de cobre, ítrio e bário (YBCO) - com conjuntos de pequenos orifícios. Quando o material tem uma corrente que passa por ele e é exposto a um campo magnético, os portadores de carga do material orbitam nos orifícios como a água que circula um dreno.
“Podemos medir a frequência com que essas cargas circulam”, afirmou Valles. “Nesse caso, descobrimos que a frequência é consistente com a existência de dois elétrons por vez, em vez de apenas um. Assim, podemos concluir que os portadores de carga nesse estado são pares de Cooper e não elétrons únicos”.
A ideia de que pares de Cooper tipo bósons são responsáveis ​​por esse estado metálico é uma surpresa, dizem os pesquisadores, porque existem elementos da teoria quântica que sugerem que isso não deveria ser possível. Portanto, entender exatamente o que está acontecendo nesse estado pode levar a uma nova e empolgante física, mas serão necessárias mais pesquisas.
Felizmente, dizem os pesquisadores, o fato de esse fenômeno ter sido detectado em um supercondutor de alta temperatura tornará as pesquisas futuras mais práticas. O YBCO começa a superconduzir em torno de -181 graus Celsius, e a fase metálica começa a temperaturas logo acima disso. Está muito frio, mas é muito mais quente que outros supercondutores, que são ativos logo acima do zero absoluto. Essa temperatura mais alta facilita o uso da espectroscopia e outras técnicas destinadas a entender melhor o que está acontecendo nesta fase metálica.
No futuro, dizem os pesquisadores, pode ser possível aproveitar esse estado de metal bosônico para novos tipos de dispositivos eletrônicos.
“O problema dos bósons é que eles tendem a estar mais em estado de onda do que os elétrons, por isso falamos sobre eles terem uma fase e criar interferências da mesma maneira que a luz”, afirmou Valles. “Portanto, pode haver novas modalidades de movimentação de carga nos dispositivos, brincando com a interferência entre bósons”.
Mas, por enquanto, os pesquisadores estão felizes por ter descoberto um novo estado da matéria. “A ciência se baseia em descobertas”, disse Xu, “e é ótimo ter descoberto algo completamente novo”.

Mais informações: Chao Yang et al, Science (2019). DOI: 10.1126 / science.aax5798.



domingo, 28 de julho de 2019

Geladeira supercondutora chegará perto do zero absoluto


Redação do Site Inovação Tecnológica - 10/07/2019




Em vez de um refrigerante que oscila entre os estados líquido e gasoso, o refrigerador quântico emparelha e desemparelha os pares de elétrons em materiais supercondutores. [Imagem: Michael Osadciw/Universidade de Rochester]



Refrigerador definitivo
Imagine uma geladeira tão fria que possa levar átomos aos seus estados fundamentais, perto do zero absoluto. Sreenath Manikandan e colegas dos EUA e da Itália conceberam um refrigerador com essa capacidade usando as propriedades da supercondutividade. Eles batizaram o equipamento de “geladeira quântica” porque tanto as propriedades da supercondutividade utilizadas, quanto os efeitos gerados nos átomos individuais assim congelados, são ditados pela mecânica quântica.
O ambiente ultrafrio produzido é propício para gerar os efeitos necessários para aprimorar as tecnologias quânticas, por exemplo, tentando levar diferentes materiais para seu estado supercondutor, ou testando qubits para avaliar as melhores tecnologias para os futuros computadores quânticos.



Geladeira comum
Embora os refrigeradores quânticos supercondutores não sirvam para uso na cozinha, seu princípio operacional é bastante semelhante: as geladeiras tradicionais não funcionam tornando seu conteúdo mais frio, mas removendo o calor, tirando-o de seu interior e levando-a para outra região no espaço, neste caso, o lado de fora da geladeira.
Isto é feito movendo um fluido - o refrigerante - entre reservatórios quentes e frios, e mudando seu estado de líquido para gasoso. O refrigerante em estado líquido passa por uma válvula de expansão, que diminui sua pressão e temperatura à medida que a expansão o faz passar para o estado gasoso. O refrigerante agora frio passa através dos canos em formato de bobina do evaporador no interior da caixa da geladeira, absorvendo o calor desse ambiente fechado. O refrigerante é então novamente comprimido por um compressor alimentado por eletricidade, elevando ainda mais sua temperatura e pressão e transformando-o de um gás em um líquido quente. O líquido quente condensado, mais quente que o ambiente externo, flui através das serpentinas do condensador na parte externa da geladeira, irradiando calor para o meio ambiente. O líquido então reentra na válvula de expansão e o ciclo se repete.



Como se poderia esperar, o refrigerador quântico é minúsculo, do tamanho de um chip, mas o suficiente para guardar suas partículas atômicas e subatômicas. [Imagem: Manikandan et al. - 10.1103/PhysRevApplied.11.054034]



Geladeira quântica supercondutora
A geladeira supercondutora é parecida. No entanto, em vez de um refrigerante que passa de um estado líquido para gasoso, ela usa os chamados pares de Cooper - elétrons que viajam emparelhados e parecem explicar o próprio fenômeno da supercondutividade - fazendo-os emparelhar e desemparelhar.
“Estamos fazendo exatamente a mesma coisa que uma geladeira tradicional, mas com um supercondutor,” explicou Manikandan.
Em vez de serpentinas, válvulas e um compressor, tudo acontece em uma pilha de metais dispostos em camadas, colocados dentro de uma geladeira de diluição criogênica, já fria.
A camada inferior da pilha é uma folha de nióbio supercondutor, que funciona como um reservatório quente, semelhante ao ambiente externo de um refrigerador tradicional. A camada intermediária é tântalo supercondutor, que é a substância de trabalho, semelhante ao refrigerante da geladeira tradicional. A camada superior é de cobre, que é o reservatório frio, semelhante ao interior da geladeira tradicional.
Quando uma corrente elétrica é aplicada paulatinamente ao nióbio, produz-se um campo magnético que penetra na camada de tântalo, fazendo com que seus elétrons supercondutores se emparelhem, fazendo a transição para seu estado normal e perdendo calor. A camada de tântalo agora fria absorve o calor da camada de cobre, que se torna mais quente.
O campo magnético é então lentamente desligado, fazendo com que os elétrons no tântalo se emparelhem e voltem a se transformar em um estado supercondutor, e o tântalo fica mais quente que a camada de nióbio. O excesso de calor é então transferido para o nióbio. O ciclo se repete, mantendo uma temperatura baixa na camada superior de cobre.
Mas como a substância de trabalho no refrigerador quântico é um supercondutor, “são os pares de Cooper no cobre que desemparelham e ficam mais frios quando você aplica um campo magnético lentamente a temperaturas muito baixas, levando o atual refrigerador de última geração [a geladeira de diluição criogênica] a um patamar fundamental e arrefecendo-a ainda mais,” explicou Manikandan.



Utilidades do refrigerador quântico supercondutor
Em vez de armazenar alimentos, a geladeira quântica supercondutora poderá ser usada para armazenar coisas como qubits, as unidades básicas dos computadores quânticos, que precisam ser superfrios para não sofrerem interferências e perderem os dados.
Essa geladeira também será útil para resfriar sensores quânticos, que medem a luz de forma muito eficiente e são fundamentais em sensores muito delicados, como os usados nos telescópios, ou para fazer imagens de tecidos profundos usando aparelhos de ressonância magnética.



Bibliografia

Artigo: Superconducting Quantum Refrigerator: Breaking and Rejoining Cooper Pairs with Magnetic Field Cycles
Autores: Sreenath K. Manikandan, Francesco Giazotto, Andrew N. Jordan.
Revista: Physical Review Applied.
Vol.: 11, 054034.
DOI:10.1103/PhysRevApplied.11.054034.



quinta-feira, 24 de dezembro de 2015

Físicos desvendam o comportamento dos supercondutores fortemente desordenados (Physicists unravel behavior of strongly disordered superconductors)



A diferença entre os supercondutores convencionais e supercondutores que exibem pseudogap. Em supercondutores convencionais, quando a temperatura está acima do valor crítico, a supercondutividade desaparece devido à quebra dos pares de Cooper, mas em supercondutores que exibem pseudogap isso acontece porque o arranjo desordenado começa a dificultar o deslocamento dos pares de Cooper, e tornam-se localizados em uma região particular da rede. Imagem: cortesia de MIPT Press Service.



    Os físicos Mikhail Feigel'man e Lev Ioffe explicaram o efeito incomum em um número de materiais supercondutores. Usando uma teoria que desenvolveram anteriormente, os cientistas conectaram a densidade de portadores supercondutor com as propriedades quânticas de uma substância.
       No artigo publicado pelos cientistas, eles discutem os chamados supercondutores de pseudogap. O termo gap aparece na teoria quântica da supercondutividade e é uma definição para a abertura característica em um diagrama de distribuição de energia do elétron, o espectro de energia. É feita uma distinção entre os supercondutores com um gap ‘convencional’ e supercondutores especiais, que mesmo em seu estado normal, demonstram algo semelhante a um gap - ele é chamado de pseudogap.



Pares de elétrons e supercondutividade

    A fim de entender o que é um gap, nós precisamos examinar brevemente a teoria por trás do termo. Atualmente, não existe um modelo completo que é capaz de explicar o fenômeno da supercondutividade em detalhes (e que nos permita, por exemplo, sintetizar um supercondutor capaz de funcionar à temperatura ambiente).
       No entanto, um modelo de sucesso que é o mais frequentemente usado é a teoria BCS, que foi desenvolvida por John Bardeen, Leon Cooper e John Robert Schrieffer. Na teoria BCS, um papel-chave é desempenhado por dois pares de Cooper - elétrons ligados juntamente com spins opostos.
       Estes pares são caracterizados por uma ligação muito fraca entre as partículas, e por outro lado, eles não interagem com a estrutura do cristal e, portanto, movem-se livremente dentro de uma substância e não perdem energia em colisões.
       Se um metal é aquecido até uma temperatura em que o movimento térmico das partículas não impeça a formação de pares de Cooper, estes pares podem mover-se sem perda de energia e, assim, fazem com que todo o espécime alcance o estado supercondutor.
A formação de pares de Cooper altera não apenas as propriedades elétricas de uma substância, mas também a distribuição da energia dos elétrons, o espectro de energia. O acoplamento dos pares resulta num gap característico, ou pseudogap dependendo das circunstâncias. Se a substância for supercondutora, após o resfriamento até à temperatura crítica, a supercondutividade é alcançada e ao mesmo tempo ocorre a formação dos pares de Cooper, que é chamado de gap. No entanto, se isto ocorre no diagrama do espectro de elétrons, após o resfriamento, mas a supercondutividade ainda não tiver sido atingida, o termo pseudogap é usado (o que significa que não é uma diferença ‘verdadeira’, e a sua formação não está ligada ao aparecimento de supercondutividade).
       Se esta substância é resfriada ainda mais, ela passa ao estado supercondutor e o gap no espectro aumenta, seu valor inclui tanto o pseudogap como o próprio gap supercondutor. As propriedades destes supercondutores são consideravelmente diferentes daquelas exibidas pelos supercondutores convencionais.



Pseudogap em um espectro de energia real. Imagem: Benjamin Sacepe (Neel Institute, Grenoble, França)



Supercondutores com um gap normal são bem descritos pela teoria BCS, que conecta explicitamente os pares de Cooper com a formação do gap no diagrama de distribuição de energia. De acordo com esta teoria, a densidade de corrente supercondutora é diretamente proporcional à magnitude do gap supercondutor. Mais pares de Cooper são formados por unidade de volume quanto maior a diferença no espectro de energia, ou seja, o tamanho do gap.
       Supercondutores com um pseudogap não se encaixam na teoria BCS, mas eles podem ser descritos utilizando a teoria proposta anteriormente por Mikhail Feigel'man, Lev Ioffe e seus colegas. Neste novo trabalho, os cientistas usaram sua teoria para calcular a dependência da densidade de corrente em supercondutores com a largura do pseudogap.



A chave está em desordem

    O estudo, a nível microscópico, da estrutura dos supercondutores que exibem pseudogap mostrou que estes materiais são fortemente desordenados. Isto significa que os seus átomos não estão dispostos em uma estrutura cristalina, ou a estrutura desta rede é fortemente prejudicada. Exemplos de supercondutores que exibem pseudogap são filmes finos de nitreto de titânio (em que a estrutura do cristal é comprometida em muitos lugares) e óxido de índio (que pode ser completamente amorfo, como o vidro).
       A desordem desempenha um papel fundamental porque a transição para um estado supercondutor não ocorre ao mesmo tempo da formação dos pares de Cooper. Os elétrons que estão ligados uns aos outros nestes materiais aparecem depois que a resistência elétrica desaparece, porque inúmeras variações na estrutura microscópica da substância a partir da ordem ideal pode impedir um par de Cooper, o qual em cristais ordenados move-se livremente, sem interferências.
       Deve-se ressaltar que os pares de Cooper em um supercondutor que exibe pseudogap não podem ser descritos como imóveis. Como resultado de efeitos quânticos, o seu comportamento é um pouco mais complexo: obedecendo o princípio da incerteza, eles não congelam imóveis em um lugar, mas “espalham-se” sobre uma grande distância (dezenas de distâncias interatômicas), em uma região finita. Se eles pudessem se mover, esta região iria cobrir toda a substância.
       Deduzir parâmetros elétricos de supercondutores com pseudogap a partir de propriedades quânticas é importante tanto do ponto de vista fundamental (os cientistas estão começando a ter uma melhor compreensão geral dos supercondutores), como prático. Os investigadores observam que usando o óxido de índio, um supercondutor com pseudogap típico, é possível criar um dispositivo quântico supercondutor que pode ser utilizado como um protótipo para um computador quântico.
       Tendo em consideração o movimento de pares de Cooper em uma substância com variados graus de desordem, os cientistas deduziram a dependência da densidade teórica de pares de Cooper na substância com a largura do pseudogap. Esta é uma característica importante, como é inversamente proporcional à indutância do filme (os materiais descritos são obtidos na forma de filme) no estado supercondutor. Filmes como estes com alta indutância e resistência zero são necessários para produzir qubits, as unidades fundamentais de dispositivos de computação quântica.
       Em supercondutores convencionais, a dependência da densidade de pares de Cooper com a largura do pseudogap é linear, contudo, nas substâncias testadas a dependência é quadrática. Este fato é fácil de verificar experimentalmente em um estudo mais detalhado, e, se isso acontecer, a teoria desenvolvida anteriormente pelos autores receberá uma confirmação adicional.








quarta-feira, 20 de maio de 2015

Pesquisadores descobrem “dança-oscilante” em pares de elétrons (Researchers discover 'swing-dancing' pairs of electrons)



Linha inferior: representação de elétrons em um estado supercondutor. Os casais dançam de forma síncrona e sem perda de energia. Linha superior: elétrons dançando de forma totalmente independente no estado normal. Linha do meio: elétrons “dançam oscilando” como pares, mas não formam um estado supercondutor.


Pesquisadores liderados por Jeremy Levy descobriram que elétrons podem “dançar oscilando”. Este comportamento eletrônico pode levar potencialmente a novas famílias de dispositivos quânticos.
        Supercondutores constituem a base para dispositivos de imagem de ressonância magnética, bem como tecnologias emergentes, como computadores quânticos. No coração de todos os supercondutores está o agrupamento de elétrons em pares.
        Levy, Professor de Física e diretor do Pittsburgh Quantum Institute, descobriu uma fase onde os elétrons formam pares, mas não chegam a um estado supercondutor. A descoberta fornece novas pistas fundamentais em um mecanismo que um dia poderia ser usado para projetar um material que é supercondutor à temperatura ambiente. Tal avanço iria transformar radicalmente uma variedade de tecnologias, como trens de alta velocidade, transmissão de energia sem perdas e computadores que operam com requisitos de energia insignificantes.
        Uma maneira de entender esse novo estado é estender uma analogia articulada por J. Robert Schrieffer, que dividiu o Prêmio Nobel de Física em 1972 pela teoria (BCS) da supercondutividade. Em um supercondutor, o movimento de elétrons emparelhados é altamente coordenado, semelhante à valsa de casais na pista de dança. No estado normal ou não supercondutor, os elétrons se movem de forma independente, esbarrando uns nos outros de vez em quando e dissipando energia. O que a nova pesquisa identificou é um estado intermediário onde os elétrons formam pares, mas cada par se move de forma independente. Pode-se considerar que os pares de elétrons estão numa “dança oscilante”, onde os pares dançam de mãos dadas, mas não se movem em sincronia.
        David M. Eagles, em 1969, publicou a primeira teoria para descrever como os elétrons formam pares sem estabelecer um estado supercondutor. Guanglei Cheng, professor assistente no laboratório de Levy, descreve como a teoria foi comprovada: “A descoberta vem do avanço tecnológico para fabricar transistores supercondutores de um único elétron em uma interface de óxido - uma tecnologia que nos permite contar os elétrons e os pares, um por um. E isso é apenas o começo. Agora temos uma plataforma inovadora para estudar as fascinantes correlações elétron-elétron em dimensões nanométricas”.







segunda-feira, 10 de novembro de 2014

Isolante topológico supercondutor (topological insulator goes superconducting)





Esquerda: filmes ultrafinos de Bi2Se3 epitaxialmente crescido na superfície (0001) do supercondutor monocristalino 2H-NbSe2 usando a técnica de epitaxia de feixe molecular (molecular beam epitaxy technique). Centro: curvas de intensidade ARPES e mapa de dispersão ARPES de alta resolução do filme Bi2Se3 sobre NbSe2 depois de "destapar" usando uma energia de fóton incidente de 50 eV (no detalhe). Direita: a direção da polarização de spin dos elétrons no nível de Fermi do supercondutor Bi2Se3. Cortesia: S-Y Xu


Físicos dos EUA e Taiwan dizem que encontraram a primeira evidência da supercondutividade no isolante topológico seleneto de bismuto graças às novas observações espectroscópicas. A descoberta não é apenas de fundamental importância para uma série de teorias de física da matéria condensada e de partículas, mas pode até ser explorada para construir no futuro qubits topológicos tolerantes a falhas.
Isolantes topológicos são materiais artificialmente construídos isolantes no volume da amostra, mas que podem conduzir eletricidade na superfície. Uma equipe de pesquisadores liderada por Zahid Hasan, da Universidade de Princeton, usando a técnica angle-resolved photoemission spectroscopy (ARPES), afirmam ter visto o “emparelhamento de Cooper” (a marca registrada da supercondutividade) nos elétrons que se encontram na superfície do isolante topológico Bi2Se3. ARPES é uma das formas mais diretas de estudar a estrutura eletrônica e supercondutividade em sólidos.
Supercondutividade é um fenômeno coletivo no qual os elétrons se movem em direções opostas superando a repulsão eletrostática para formar pares de Cooper abaixo de uma certa temperatura de transição. Estes pares podem condensar em um único estado quântico e mover-se sem resistência elétrica através do material supercondutor.
“Em supercondutores convencionais, elétrons de condução que se deslocam ao longo de uma determinada direção têm seus spins em ambas as direções, ‘up’ e ‘down’, e os dois tipos de elétrons podem emparelhar-se”, explica o membro da equipe Su-Yang Xu, também de Princeton. “Isolantes topológicos são diferentes. Os elétrons se movendo em uma direção deverão ter apenas elétrons com spin-up disponíveis para emparelhar-se, e aqueles que se movem na direção oposta só tem elétrons spin-down disponíveis. É por isso que as superfícies de isolantes topológicos são também chamadas de ‘half-Dirac-gas’ porque apenas metade dos elétrons está disponível para contribuir com a corrente elétrica de resistência zero. Além disso, as fortes interações dos pares de Cooper que existem em alguns supercondutores estão ausentes em isolantes topológicos e a supercondutividade nestes sistemas existe em um estado ‘fracamente interagente’. Fracamente interagente nesse contexto, significa que os elétrons não se repelem fortemente.”

Emparelhamento helicoidal de Cooper

Os pesquisadores mediram a energia cinética e a direção de spin dos elétrons ejetados de uma amostra de Bi2Se3 em um substrato de seleneto de nióbio (NbSe2). “O processo de fotoemissão nos fornece informações extremamente úteis sobre a estrutura eletrônica e propriedades de um material”, diz Xu, “e a técnica com resolução de spin fornece informações adicionais sobre como são configurados os spins dos elétrons no material”.
Graças às temperaturas ultrabaixas em que realizaram os experimentos, Hasan e seus colegas dizem que eles foram capazes de observar pela primeira vez o “emparelhamento helicoidal de Cooper” em um sistema eletrônico de Dirac, fazendo uso de uma coisa chamada momentum-resolved Bogoliubov quasiparticle spectrum do isolante topológico quando é colocado sobre um substrato de um supercondutor convencional como o NbSe2.

Férmions de Majorana e outra física exótica

A teoria prevê que partículas chamadas férmions de Majorana (partículas que são suas próprias antipartículas) poderiam ser feitas através da combinação de um supercondutor convencional com um isolante topológico. Uma série de outros aspectos fundamentais da física exótica também pode estar à espreita em tais estados de superfície no estado sólido.
Férmions de Majorana são previstos em física de alta energia, mas ainda não foram observados em experimentos de física de partículas. “Se eles forem encontrados na matéria condensada, como em um supercondutor topológico tipo half-Dirac-gas, eles podem ser usados para construir o famoso qubit topológico - o que nos ajudaria a fazer um computador quântico tolerante a falhas”, diz Xu. Isto porque férmions de Majorana - ao contrário dos familiares férmions de Dirac, como os elétrons - obedecem as “estatísticas não-Abelianas” e assim devem ser robustos ao ruído ambiental de fundo. Férmions de Majorana poderiam armazenar e transmitir informação quântica sem perturbação externa, o que é um dos principais desafios para quem tenta construir hoje um computador quântico prático e tolerante a falhas.

Testando a física de alta energia no estado sólido?

A supersimetria (outra teoria da física de alta energia) é outro exemplo interessante que ainda tem que ser testada em aceleradores de partículas. “Aqui, os bósons (partículas de spin inteiro) e férmions (partículas de spin semi-inteiro) podem ser convertidos um no outro em altas energias. Teóricos da matéria condensada dizem que ambas, a supersimetria e os férmions de Majorana, podem ser produzidos na mesma configuração do estado sólido - como o ‘spin-momentum locked’ half-Dirac gas que temos estudado”.
Até agora, todas as reivindicações de ver férmions de Majorana foram em sistemas de isolantes não-topológicos, mas um isolante topológica de Majorana seria uma partícula muito robusta, de longa duração.
Estimulado por suas observações, a equipe diz que agora está planejando uma técnica híbrida de espectroscopia de fotoemissão (combinação de espectroscopia de tunelamento e de transporte elétrico) para procurar um férmion de Majorana, e mais importante, as partículas de supersimetria (SUSYs) no componente helicoidal isolado dos pares de Cooper estudados no presente trabalho.
Embora nossos dados atuais não forneçam qualquer evidência para a supersimetria, esta é uma emocionante - e alguns diriam ambiciosa - direção futura que esperamos prosseguir graças a nossa identificação do emparelhamento helicoidal de Cooper, diz Xu.
A pesquisa está detalhada no artigo da Nature Physics.




Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!