Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador teorias. Mostrar todas as postagens
Mostrando postagens com marcador teorias. Mostrar todas as postagens

sábado, 8 de agosto de 2015

Os mistérios da supercondutividade



Por Tárcio Fabrício e Ana Beatriz Tuma

Passados cem anos de sua descoberta, fenômeno continua a intrigar os cientistas, prometendo avanços tecnológicos revolucionários

 
Levitação: um dos incríveis fenômenos possibilitados pelos supercondutores.


Em 1911, o holandês Heike Kamerlingh Onnes (1853-1926) descobriu um fenômeno que mudaria o entendimento sobre a resistência elétrica dos materiais. A partir daquele momento, foi possível sonhar com a condução de grandes quantidades de energia sem nenhum tipo de perda. Tinha início a história da supercondutividade. Mas, afinal, por que o fenômeno da supercondutividade chama tanta atenção dos cientistas? Para onde a sua total compreensão e domínio podem nos levar?
       Antes de mergulharmos nas aplicações tecnológicas e nas pesquisas atuais relacionadas à supercondutividade, é necessário compreender como se dá tal fenômeno. Todo e qualquer material apresenta a chamada resistência elétrica. Nos condutores, quando uma corrente elétrica é adicionada, um grande número de elétrons livres começa a se deslocar de maneira desordenada, colidindo entre si e com obstáculos criados pelo próprio material condutor. Assim, boa parte dessa corrente é transformada em calor e dissipada, representando perda de energia, no chamado efeito Joule.
       Já nos supercondutores, a possibilidade de condução de energia sem perdas está relacionada à temperatura do material. Edson Vernek, do Instituto de Física da Universidade Federal de Uberlândia (UFU), conta que mesmo antes da revolucionária descoberta de Onnes já eram conhecidas algumas dessas relações entre temperatura e condutividade elétrica. “Já se sabia que um pedaço de metal, quando está em temperatura alta, possui alta resistividade, isto é, apresenta dificuldade de passar corrente elétrica”, explica.
       Em seus experimentos, Onnes resfriou uma amostra de mercúrio utilizando hélio liquefeito e testou seu comportamento elétrico. Quando o material alcançou a temperatura de 4,2 K (-268,95 ºC), a resistência desapareceu. “Esta foi a grande surpresa, o começo da supercondutividade”, afirma Fabrício Macedo de Souza, também da UFU. “É o que chamamos de temperatura crítica”, explica Vitorvani Soares, do Instituto de Física da Universidade Federal do Rio de Janeiro (UFRJ). “Quando o material é resfriado a temperaturas abaixo desse limiar é que se estabelece o fenômeno da supercondutividade”, completa.
       Entretanto, ainda faltava uma explicação para o fenômeno recém-descoberto por Onnes. Muitos cientistas buscaram essa explicação, como os irmãos alemães Fritz (1900-1954) e Heinz (1907-1970) London – com o chamado modelo de dois fluidos – e os russos Vitaly Ginzburg (1916-2009) e Lev Landau (1908-1968) – com a teoria denominada Ginzburg-Landau. Contudo, o entendimento mais preciso do fenômeno demorou 46 anos para acontecer, a partir dos estudos realizados por John Bardeen (1908-1991), Leon Cooper (1930) e John Robert Schrieffer (1931). A Teoria BCS, como ficou conhecida, explicou o fenômeno a partir da compreensão de como se formam os chamados “pares de Cooper”.


Pares de Cooper

Os pares de Cooper são pares de elétrons que começam a se formar quando os supercondutores são resfriados abaixo da sua temperatura crítica. “Assim, em pares, eles conseguem fluir mais livremente pelo material, sem que percam energia”, conta Evandro Vidor de Mello, do Instituto de Física da Universidade Federal Fluminense (UFF). Isto porque os pares de Cooper apresentam um comportamento diferente dos elétrons isolados, atuam como partículas de spin inteiro, o que permite que sejam condensados em um mesmo nível de energia.




Modelo das bolas de boliche (fonte: Branício, P. S., 2001.



Com isso, um dos elétrons, em sua passagem pela chamada rede cristalina, cria uma deformação, atraindo para perto de si o outro componente do par. Para compreender esse fenômeno, podemos pensar nesses elétrons como bolas de boliche em um colchão de água: Quando uma das bolas é empurrada para o centro do colchão, a deformação causada na superfície faz com que a segunda bola “role” para junto da primeira.
       Vernek, da UFU, esclarece que os elétrons pareados não estão necessariamente juntos, podendo estar distantes no sistema. “É como em um salão de danças, onde tem muita gente e os casais dançam. Um dos membros do casal pode estar de um lado e, o outro, em um ponto distinto do salão, e eles estão dançando juntos, pois sabem que são os pares.” (Veja aqui o vídeo “A dança da supercondutividade”.)


Caça aos supercondutores

De acordo com a Teoria BCS, que rendeu um prêmio Nobel para seus idealizadores, o fenômeno da supercondutividade seria improvável em materiais com temperaturas acima de 30 K (-243,2 ºC). Porém, em 1986, outra descoberta revolucionária tomou forma com Johannes Bednorz e Karl Müller, que descobriram um supercondutor cerâmico com temperatura crítica de 35 K (-238,2 ºC). A descoberta rendeu aos dois pesquisadores o Prêmio Nobel de Física em 1987, considerado o mais rápido da história.
       Os supercondutores cerâmicos abriram novas perspectivas de pesquisa e permitiram logo em seguida que Paul Chu e sua equipe descobrissem um óxido de ítrio-bário-cobre (YBa2Cu3O7) com temperatura crítica de 92 K (-181,2 ºC). Tal feito revolucionou as possibilidades de aplicação dos supercondutores, uma vez que é possível utilizar nitrogênio líquido – com temperatura de ebulição de 77 K – no resfriamento do material, em vez do hélio líquido, que é muito mais caro. Estava aberta a temporada de caça a novos materiais supercondutores em temperaturas mais elevadas.
       Se por um lado essas descobertas ampliaram a possibilidade de utilização desses materiais, por outro elas criaram novas perguntas para os cientistas, uma vez que a Teoria BCS explica o fenômeno em alguns materiais, mas não pode ser aplicada a outros. Justamente por isso, de acordo com Souza, da UFU, a supercondutividade ainda é uma área em aberto. “Não temos uma teoria que explique o comportamento dos supercondutores cerâmicos, de alta temperatura. Com certeza, o físico que conseguir explicar, também ganhará o Nobel”, conclui.



Peculiaridades

Vitorvani Soares, da UFRJ, revela que o fenômeno da supercondutividade ainda guarda outra característica muito particular: quando um campo magnético é aplicado a um material que encontra-se na fase supercondutora, gera um campo contrário e igual ao aplicado, fazendo com que o campo magnético de seu interior fique nulo. Essa descoberta coube a Walter Meissner (1882-1974) e Robert Ochsenfeld (1901-1993) que, em 1933, observaram que os supercondutores, quando colocados imersos em um campo magnético externo e resfriados abaixo de sua temperatura crítica, são capazes de expelir o campo magnético aplicado, no que ficou conhecido como “Efeito Meissner”. “É exatamente essa propriedade que possibilita a levitação desses materiais”, revela Mello, da UFF.




Transporte mais eficiente: Os MagLevs utilizam supercondutores para levitar, diminuir o atrito e, assim, alcançar altas velocidades.


A presença de um ímã próximo ao material supercondutor induz a formação de correntes na superfície desse material. Essas correntes geram seu próprio campo magnético, fazendo com que o campo do interior do material, quando somado ao campo externo, seja igual a zero. Assim, o campo do ímã é repelido pelo campo gerado na superfície do supercondutor, como se este último atuasse como um espelho refletindo o campo magnético do imã. De acordo com Mello, é esse o efeito que possibilita a criação dos trens do tipo MagLev.
       “Nos MagLevs, você precisa de campos magnéticos intensos. Na base do trilho, você usa bobinas supercondutoras para gerar campos magnéticos intensos. Onde o trem levita, não tem atrito e, sem o atrito, não há perda de energia e o trem pode adquirir altas velocidades”, afirma Souza.
       As características magnéticas dos materiais supercondutores também são distintas de acordo com o seu tipo. Enquanto nos supercondutores do tipo I o efeito Meissner é total, nos do tipo II existe a penetração parcial do campo magnético para dentro do material.
       Outra característica curiosa nessa relação entre supercondutividade e magnetismo é o fato de que quando os materiais supercondutores são expostos a campos magnéticos acima de determinado valor, o chamado campo magnético crítico, eles voltam a ser condutores normais. E, no caso dos supercondutores do tipo II, que apresentam temperaturas críticas mais elevadas, a transição para o estado supercondutor acontece de forma gradual e eles não apresentam o chamado efeito Meissner de forma ideal como os materiais do tipo I.



Tipos de Supercondutores







sexta-feira, 19 de dezembro de 2014

Nova lei para os supercondutores (New law for superconductors)




Átomos de nióbio e nitrogênio em um filme supercondutor ultrafino que ajudaram pesquisadores do MIT a descobrirem uma lei universal da supercondutividade. Imagem: Yachin Ivry.


Descrição matemática da relação entre espessura, temperatura e resistividade pode estimular avanços


Pesquisadores do MIT descobriram uma nova relação matemática entre a espessura do material, a temperatura e a resistência elétrica que parece válida para todos os supercondutores. Eles descreveram suas descobertas na revista Physical Review B.
       O resultado pode lançar luz sobre a natureza da supercondutividade e também pode levar a melhorias na engenharia de circuitos supercondutores para aplicações em computação quântica e computação de potência ultrabaixa.
       “Fomos capazes de usar esse conhecimento para fazer dispositivos de área maior, que não eram possíveis de construir anteriormente, e o rendimento dos dispositivos aumentou significativamente”, diz Yachin Ivry, um pós-doc do MIT.
Supercondutores são materiais que, em temperaturas próximas do zero absoluto, apresentam nenhuma resistência elétrica. Isto significa que é preciso pouquíssima energia para induzir uma corrente elétrica. Um único fóton irá fazer o truque, é por isso que eles são úteis como fotodetectores quânticos. Um chip de computador construído a partir de circuitos supercondutores consumiria, em princípio, um centésimo da energia de um chip convencional.
       “Filmes finos são cientificamente interessantes, porque eles permitem que você obtenha mais de perto o que nós chamamos de transição supercondutora-isolante”, diz Ivry. “A supercondutividade é um fenômeno que depende do comportamento coletivo dos elétrons. Então, se você vai a dimensões cada vez menores, você obtém o início do comportamento coletivo”.
       Especificamente, Ivry estuda o nitreto de nióbio, um material que tem uma temperatura crítica relativamente elevada. Mas, como a maioria dos supercondutores, ele tem uma temperatura crítica mais baixa quando depositado em filmes finos nos quais se baseiam os nanodispositivos.
       Trabalho teórico anterior tinha caracterizado a temperatura crítica do nitreto de nióbio como uma função da espessura da película ou da sua resistividade medida à temperatura ambiente. Mas nem a teoria parecia explicar os resultados que Ivry estava obtendo. “Vimos grande dispersão e sem tendência clara”, diz ele. “Não fazia sentido, porque nós crescemos os filmes em laboratório, nas mesmas condições”.
       Assim, os pesquisadores realizaram uma série de experimentos em que eles mantinham constantes ou a espessura ou a ‘resistência superficial’, a resistência do material por unidade de área, enquanto variavam outro parâmetro. Eles, então, mediram as alterações na temperatura crítica. Um claro padrão emergiu: espessura vezes temperatura crítica igual a uma constante (A), dividido pela resistência da folha elevada a uma potência específica (B).
       Após derivar a fórmula, Ivry comparou com outros resultados descritos na literatura. Porém, seu entusiasmo inicial evaporou-se com o primeiro artigo consultado. Embora a maioria dos resultados relatados concorde perfeitamente com sua fórmula, dois deles eram dramaticamente errados. Em seguida, um colega que estava familiarizado com o artigo apontou que seus autores tinham reconhecido em uma nota de rodapé que as duas medidas podiam refletir erro experimental: ao construir o seu dispositivo de teste, os pesquisadores tinham esquecido de ligar um dos gases que eles usaram para depositar seu filmes.

Ampliando o escopo

Os outros artigos de nitreto de nióbio consultados por Ivry davam suporte às suas previsões, então ele começou a expandir o estudo para outros supercondutores. Cada novo material investigado, o obrigou a ajustar as constantes (A e B) da fórmula. Mas, a forma geral da equação se mantinha através de resultados relatados por cerca de três dezenas de supercondutores diferentes.
       Não era necessariamente surpreendente que cada supercondutor tivesse sua própria constante associada, mas Ivry e Berggren não estavam felizes que a sua equação exigisse duas delas. Quando Ivry ‘plotou’ graficamente A contra B para todos os materiais investigados, os resultados ficaram em linha reta.
       Encontrar uma relação direta entre as constantes permitiu contar com apenas uma delas sob a forma geral de sua equação. Mas mais interessante, os materiais em cada extremidade da linha tinham propriedades físicas distintas. Aqueles no topo eram altamente desordenados - ou, tecnicamente, ‘amorfos’; aqueles da parte inferior eram mais ordenados, ou ‘granular’. Então, a tentativa inicial de Ivry para banir uma deselegância na sua equação já pode fornecer algumas dicas sobre a física dos supercondutores em pequenas escalas.
       “Nenhuma teoria admitiu até agora uma explicação para a relação da temperatura crítica com a resistência superficial e espessura da folha de uma ampla classe de materiais”, diz Claude Chapelier, pesquisador do France’s Alternative Energies and Atomic Energy Commission. “Existem vários modelos que não preveem as mesmas coisas”.
       Chapelier diz que gostaria de ver uma explicação teórica para essa relação. Mas, enquanto isso, “isso é muito conveniente para aplicações técnicas”, diz ele, “porque há um monte de divulgação de resultados, e ninguém sabe se eles vão conseguir bons filmes para dispositivos supercondutores. Ao colocar um material sob esta lei, você já sabe se é um bom filme supercondutor ou não”.






terça-feira, 1 de julho de 2014

Físicos explicam fenômeno contraditório em supercondutividade (dissipative superconducting state of non-equilibrium nanowires)

 


Pesquisador da Universidade Santa Barbara na Califórnia desenvolveu uma nova maneira para fabricar nanocircuito supercondutor. Contudo, os extremamente pequenos nanofios de zinco projetados apresentaram propriedades inesperadas.



Este diagrama de fases de campo magnético atual mostra a alta sensibilidade do planalto tensão ao campo magnético. Quando o planalto desaparece, o estado supercondutor se expande.




        Chen, juntamente com o seu orientador de tese, Allen M. Goldman, e o físico teórico Alex Kamenev, ambos da Universidade de Minnesota, passou anos procurando uma explicação para estes efeitos extremamente intrigantes. Seus resultados foram publicados na Nature Physics. Clique aqui!

        “Estávamos determinados a descobrir como poderíamos conciliar os estranhos fenômenos com as regras que regem a supercondutividade”, disse o principal autor Chen. “A coexistência de supercondutividade com dissipação, o que observamos, é contra-intuitivo e dribla as regras como as conhecemos.”

     Supercondutividade e dissipação são processos mutuamente excludentes, pois dissipação é uma característica do estado normal. “Mas nós descobrimos que a supercondutividade e dissipação podem coexistir em condições bastante genéricas, no que parece ser uma forma universal”, disse Chen.

Depois de longo e cuidadoso trabalho, envolvendo esforços teóricos e experimentais, os pesquisadores descobriram uma explicação que se encaixa. Por trás de todos os fenômenos observados, há um estado de não equilíbrio peculiar de excitações de quase-partículas tipo-elétron que se formam nos nanofios projetados por Chen.

        As quase-partículas são criadas por deslizamentos de fase. Num estado supercondutor, quando supercorrente flui através do nanofio, a função mecânica quântica descrevendo a supercondutividade do fio se desenvolve ao longo do comprimento do fio, com a forma de um espiral. De tempos em tempos, uma das revoluções contrai e desaparece completamente. Este evento é chamado de deslizamento de fase. Esta peculiaridade gera quase-partículas, dando origem a um estado desconhecido onde dissipação e supercondutividade coexistem.

        “A realização mais significativa foi fazer os nanofios menores e mais frios do que ninguém tinha feito antes”, disse Kamenev. “Isto permitiu que as quase-partículas viajassem mais rápido através do fio e evitassem o relaxamento. Isto conduz a um peculiar estado não térmico, que combina as propriedades de um supercondutor e um metal normal, ao mesmo tempo.”

        Além de descobrir este fenômeno único, a equipe também encontrou outra propriedade até então não vista no platô de tensão. Quando um campo magnético é ligado no estado platô de tensão, em vez de diminuir a região do supercondutor, que é o que normalmente ocorreria, a área supercondutora expande e é reforçada.

        “Esta é uma propriedade inesperada de nanofios muito pequenos”, disse Goldman. Esse estado parece ser universal para circuitos supercondutores ultra-pequenos como os de Chen, que possui contatos ideais entre os nanoelementos e os condutores. Tais supercondutores em nanoescala podem ser componentes fundamentais em futuros sistemas de um computador supercondutor.

“Nossos resultados demonstram que nanocircuitos supercondutores podem ser usados como uma simples, mas bastante genérica, plataforma, para investigar fenômenos quânticos fora do equilíbrio,” concluiu Chen.

“Agora temos de explorar os parâmetros dos nanofios que geram o efeito e aqueles que não o fazem”, disse Goldman. “Nós também precisamos examinar o comportamento dos fios de diferentes comprimentos e diferentes materiais, a fim de definir os parâmetros.” 

Fonte: http://www.news.ucsb.edu/2014/014300/bending-rules

sábado, 17 de maio de 2014

Os desafios da supercondutividade (challenges of superconductivity)




         Mesmo depois de 1 século de sua descoberta (Onnes), a supercondutividade ainda possui alguns desafios que parecem estar muito longe de serem superados. Dois em particular são notavelmente destacados: o desenvolvimento de uma teoria ab initio que explique a supercondutividade em qualquer intervalo de temperatura e a obtenção de um material que seja supercondutor em temperatura ambiente ou maior que a ambiente. Outros desafios como a obtenção de fios com materiais cerâmicos, também estão longe da superação (Larbalestier).
         Inquestionavelmente, a teoria ab initio mais bem sucedida na descrição da supercondutividade é a teoria BCS (BCS), que explica as propriedades dos supercondutores tipo I (supercondutores convencionais). Nesta teoria, a interação elétron-fônon é o mecanismo responsável pela supercondutividade. A teoria BCS deu origem a importantes conceitos até hoje empregados, como o par de Cooper e o gap de energia. A descoberta dos high-TC causou certo abalo à teoria BCS, pois com base em seus pressupostos havia um consenso de que o limite máximo da temperatura crítica seria em torno de 30K (McMillan). As cerâmicas à base de Cu e O mantém um recorde da TC muito acima deste valor (http://www.superconductors.org/News.htm)!
         Em função disso, diversos modelos teóricos foram e continuam sendo desenvolvidos na tentativa de explicar a supercondutividade de uma maneira completa. Abaixo segue uma pequena lista destes artifícios:


         Esse é um exemplo do quanto esse campo de pesquisa é desafiador! Embora não mencionada acima, outra teoria que teve e ainda possui grande utilidade no estudo da supercondutividade é conhecida como as equações de Ginzburg-Landau (Ginzburg). Esta deu origem a uma importante grandeza conhecida como comprimento de coerência, uma medida da variação do parâmetro de ordem.
         Além do campo teórico, embora haja uma vasta gama de materiais supercondutores, o desafio de alcançar uma temperatura crítica equivalente a ambiente exigirá informações que aparentemente ainda não se possui. Não é sabido se há ou não um limite físico para a TC. Apesar disso, nada impede os materiais supercondutores de serem usados em várias aplicações úteis. Veja uma lista de aplicações aqui: Aplicações dos supercondutores.
      Para uma revisão um pouco mais detalhada, veja: Supercondutividade: um século de desafios e superação.

Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!