Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador dinâmica de vórtices. Mostrar todas as postagens
Mostrando postagens com marcador dinâmica de vórtices. Mostrar todas as postagens

domingo, 13 de agosto de 2017

Processador supercondutor mais próximo da realidade



Redação do Site Inovação Tecnológica -  08/08/2017

Fluxons
       Anote na sua agenda a nova quasipartícula que está se habilitando para impulsionar um salto qualitativo na informática: os fluxons.
       Inicialmente conhecidos como vórtices de Abrikosov (Alexei Abrikosov 1928-2017), os fluxons são quasipartículas que emergem na superfície dos supercondutores quando eles são submetidos a um campo magnético. Curiosamente, o campo magnético destrói a supercondutividade naquele ponto, com o fluxon emergindo da circulação de uma pequena corrente elétrica induzida pelo magnetismo.
       Em outras palavras, o fluxon pode ser entendido como um quantum de campo magnético.
       Agora, uma equipe da Universidade de Viena, na Áustria, demonstrou que esses objetos quantizados são particularmente adequados para armazenamento e processamento de dados, bastando que eles sejam organizados da forma correta.
       Para isso, a equipe criou uma espécie de “caixa de ovos quântica”, onde cada buraco acomoda um fluxon de forma estável e regular, criando uma matriz com centenas de milhares de fluxons, prontos para servirem de base para a computação ou para o armazenamento de bits.
       Isto representa o coroamento de um longo esforço rumo à criação de circuitos digitais em supercondutores - além da velocidade e da elevada densidade de dados, um processador supercondutor virtualmente elimina os problemas de aquecimento dos processadores atuais, permitindo dar um salto em termos de velocidade de processamento.


Estrutura (em cima) e microfotografia (embaixo) da armadilha de fluxons. [Imagem: G. Zechner et al. - 10.1103/PhysRevApplied.8.014021]


Em um supercondutor perfeitamente homogêneo, os fluxons emergem na forma de uma rede hexagonal. Mas essa estrutura em equilíbrio não serve para muita coisa. Com a nova armadilha artificial, torna-se possível organizar as quasipartículas em qualquer formação que se desejar, colocando-as em um arranjo fora do equilíbrio, adequado para codificar e processar informações.
       Georg Zechner e seus colegas criaram uma matriz de 180.000 fluxons. Dependendo do campo magnético externo, eles mudam de organização de uma forma que só é possível em se tratando de objetos quânticos: ao contrário dos ovos, onde cada depressão da caixa pode conter apenas um, na matriz cada armadilha pode ficar vazia, ter um fluxon ou ter vários fluxons - um caminho para o uso da nanoestrutura também pela computação quântica.
       “Mesmo após dias nós observamos precisamente o mesmo arranjo de fluxons - uma estabilidade de longo prazo que é particularmente surpreendente para um sistema quântico,” disse Zechner.
       A equipe agora planeja fabricar nanoestruturas mais sofisticadas, que permitirão a transferência sistemática de fluxons de uma armadilha para a outra. Este deverá ser outro passo pioneiro rumo ao desenvolvimento de circuitos de computador baseados em quasipartículas e materiais supercondutores.


Bibliografia: Hysteretic Vortex-Matching Effects in High-Tc Superconductors with Nanoscale Periodic Pinning Landscapes Fabricated by He Ion-Beam Projection. G. Zechner, F. Jausner, L. T. Haag, W. Lang, M. Dosmailov, M. A. Bodea, J. D. Pedarnig. Physical Review Applied. Vol.: 8, 014021. DOI: 10.1103/PhysRevApplied.8.014021



quinta-feira, 20 de julho de 2017

Primeira observação direta do movimento de vórtices em supercondutores (First direct observation and measurement of ultra-fast moving vortices in superconductors)




Esta foto mostra quatro imagens diferentes de vórtices que penetram a taxas de dezenas de GHz em um filme supercondutor de chumbo e que viajam a velocidades de até 20 km/s. As trajetórias do vórtice, que aparecem como linhas manchadas, mostram uma estrutura em forma de árvore com um único caule que sofre uma série de bifurcações em ramos. Cada imagem é feita em um campo magnético diferente e cada imagem é 12x12 μm2. Crédito: Yonathan Anahory/Universidade Hebraica.



Pesquisadores fizeram a primeira observação visual direta e a medição da dinâmica de vórtices ultra-rápidos em supercondutores. Sua técnica, detalhada na revista Nature Communications, poderia contribuir para o desenvolvimento de novas aplicações práticas ao otimizar as propriedades supercondutoras para uso em eletrônica.
A supercondutividade, em geral, pode ser suprimida na presença de campos magnéticos, limitando a capacidade de uso desses materiais em aplicações da vida real. Uma certa família de supercondutores, chamada de tipo 2, pode suportar valores muito maiores de campos magnéticos. Isto é graças à sua capacidade de permitir que o campo magnético ‘atravesse’ o material de forma quantizada, em uma forma tubular local chamada de vórtice. Infelizmente, na presença de correntes elétricas, esses vórtices experimentam uma força e podem começar a se mover. O movimento dos vórtices provoca resistência elétrica, o que, novamente, representa um obstáculo para as aplicações.
Compreender quando e como os vórtices se moverão ou permanecerão localizados é o foco de muita pesquisa científica. Até agora, abordar a física dos vórtices em movimento rápido demonstrou ser extremamente desafiador, principalmente devido à falta de ferramentas adequadas.


Este filme mostra a dinâmica de vórtice conduzida por diferentes correntes. Em baixas correntes, os vórtices são estacionários e aparecem como pontos brilhantes. Em correntes maiores, os vórtices se movem a 20 km/s e aparecem nesta técnica como uma linha manchada. Crédito: Yonathan Anahory/Universidade Hebraica.


Agora, uma equipe internacional de pesquisadores liderada pelo Prof. Eli Zeldov do Weizmann Institute of Science e o Dr. Yonathan Anahory, mostrou pela primeira vez como esses vórtices se movem em supercondutores e quão rápido eles podem viajar. Eles usaram uma nova técnica de microscopia chamada SQUID-on-tip, que permite a imagem magnética em alta resolução sem precedentes (cerca de 50 nm). A técnica foi desenvolvida na última década no Instituto Weizmann.
Usando este microscópio, eles observaram vórtices que fluem através de um filme supercondutor fino a taxas de dezenas de GHz e viajam a velocidades muito mais rápidas do que se pensava possível, até cerca de 72000 km/h (45000 mph). Isso não é apenas muito mais rápido do que a velocidade do som, mas também excede o limite de velocidade de quebra do condensado supercondutor, o que significa que um vórtice pode viajar 50 vezes mais rápido do que o limite de velocidade da supercorrente que o conduz. Isso seria como dirigir um objeto para viajar ao redor da Terra em pouco mais de 30 minutos.
Nas fotos e vídeos mostrados pela primeira vez, as trajetórias do vórtice aparecem como linhas manchadas cruzando de um lado a outro do filme. Isso é semelhante ao desfocar de imagens em fotografias de objetos em movimento rápido. Eles mostram uma estrutura em forma de árvore com um único caule que sofre uma série de bifurcações em ramos. Este fluxo de canal é bastante surpreendente, uma vez que os vórtices normalmente se repelem e tentam espalhar o máximo possível. Aqui os vórtices tendem a se seguir, o que gera a estrutura semelhante a uma árvore.




De frente para trás: Professor Eli Zeldov do Weizmann Institute of Science, Dr. Yonathan Anahory da Universidade Hebraica de Jerusalém e Dr. Lior Embon. Crédito: Weizmann Institute of Science.





          Uma equipe de físicos teóricos dos EUA e da Bélgica, liderada pelos professores Alexander Gurevich e Milorad Miloševic, explicou parcialmente essa descoberta pelo fato de que, quando um vórtice se move, a resistência aquece localmente o material, o que torna mais fácil os demais vórtices seguirem a mesma rota. “Este trabalho oferece uma visão da física fundamental da dinâmica de vórtices em supercondutores, crucial para muitas aplicações”, disse o Dr. Lior Embon, que era, na época, o estudante responsável por este estudo. “Essas descobertas podem ser essenciais para o desenvolvimento da eletrônica supercondutora, abrindo novos desafios para teorias e experiências na ainda inexplorada gama de campos e correntes eletromagnéticas muito altas".
“A pesquisa mostra que a técnica SQUID-on-tip pode abordar alguns problemas pendentes da supercondutividade sem equilíbrio, vórtices ultra-rápidos e muitos outros fenômenos magnéticos à escala nanométrica”, disse o Dr. Yonathan Anahory.
Além disso, os resultados das simulações sugerem que, através do desenho adequado da amostra e da remoção de calor melhorada, deve ser possível alcançar velocidades ainda maiores. Nesse regime, as frequências calculadas de penetração de vórtices podem ser ‘empurradas’ para o intervalo de freqüência de THz muito tecnicamente desejado.
A pesquisa descobre a rica física de vórtices ultra-rápidos em filmes supercondutores e oferece uma perspectiva ampla para novas investigações experimentais e teóricas. No futuro, essa tecnologia poderia permitir aos pesquisadores testar projetos que visam reduzir o movimento dos vórtices e melhorar as propriedades dos supercondutores.





Fonte2: L. Embon et al, Imaging of super-fast dynamics and flow instabilities of superconducting vortices, Nature Communications (2017). DOI: 10.1038/s41467-017-00089-3. Read more at: https://phys.org/news/2017-07-ultra-fast-vortices-superconductors.html#jCp


terça-feira, 13 de dezembro de 2016

Físicos manipulam vórtices de Abrikosov



Os vórtices distribuídos aleatoriamente na amostra supercondutora (esquerda) foram reposicionados em um padrão formando as letras “AV”, que significa ‘Abrikosov vórtices’ (à direita). Crédito: Instituto de Física e Tecnologia de Moscou (MIPT)



Um grupo de nanofotônica liderado pelo Prof. Brahim Lounis da Universidade de Bordeaux, incluindo cientistas do MIPT, realizou uma experiência única envolvendo a manipulação óptica de vórtices individuais de Abrikosov em um supercondutor. No artigo publicado na Nature Communications, os cientistas mencionam a possibilidade de projetar novas unidades lógicas baseadas em princípios quânticos para uso em supercomputadores.
Quando um material transita para o estado supercondutor, os campos de fluxo magnético são expulsos do seu volume. Um supercondutor tem todas as linhas de campo magnético ejetadas do seu interior ou permite a penetração parcial do campo magnético. O fenômeno da penetração parcial foi explicado em 1957 por Alexei Abrikosov, pelo qual recebeu o Prêmio Nobel de Física em 2003. Um material que não exibe uma expulsão completa do campo magnético é referido como um supercondutor tipo II. Abrikosov também demonstrou que esses supercondutores só podem ser penetrados por unidades de fluxo magnético discreto, um quantum de fluxo magnético de cada vez. Como o campo dentro de um supercondutor cresce mais forte, dá origem aos loops de corrente cilíndrica conhecidos como vórtices Abrikosov.
“Os supercondutores dtipo II são usados ​​em várias aplicações, desde a medicina até a energia e outras indústrias, e suas propriedades são determinadas pela ‘matéria de vórtice’, o que torna a pesquisa de vórtices e encontrar maneiras de manipulá-los muito importantes para a física moderna”, diz Ivan Veshchunov, um dos autores do estudo e pesquisador do Laboratório de Fenômenos Quânticos Topológicos em Sistemas Supercondutores do MIPT.
Para manipular os vórtices de Abrikosov, os cientistas usaram um feixe de laser focalizado. Este tipo de controle óptico de vórtice é possível pela tendência dos vórtices serem atraídos para as regiões de temperatura mais elevada num supercondutor (neste caso, um filme de nióbio resfriado a -268ºC). Os hotspots (‘pontos quentes’) necessários podem ser criados pelo aquecimento do material com um laser. No entanto, é crucial definir a potência correta do laser, uma vez que o aquecimento do material destrói suas propriedades supercondutoras.
Como os vórtices atuam como quanta de fluxo magnético, eles podem ser usados ​​para moldar o perfil de fluxo magnético geral, permitindo que os físicos realizem várias experiências com supercondutores. Enquanto uma rede de vórtices triangular ocorre naturalmente em certos campos magnéticos, outros tipos de redes (e dispositivos como lentes de vórtice) podem ser criados movendo vórtices ao redor.
O método de manipulação de vórtices no estudo pode ser usado na computação quântica para o desenvolvimento de elementos lógicos quânticos de fluxo único (RSFQ), controlados opticamente. Esta tecnologia é vista como promissora para o projeto de memória super-rápida para computadores quânticos. Os elementos lógicos baseados em RSFQ já são usados ​​em conversores digital-analógico e analógico-digital, magnetômetros de alta precisão e células de memória. Vários protótipos de computadores baseados nessa tecnologia foram desenvolvidos, incluindo o FLUX-1 projetado por uma equipe de engenheiros dos EUA. No entanto, os elementos lógicos RSFQ nestes computadores são em grande parte controlados por impulsos elétricos. A lógica controlada opticamente é uma tendência emergente nos sistemas supercondutores.
As experiências realizadas pelos cientistas poderiam ser aplicadas em pesquisas futuras sobre os vórtices de Abrikosov. Os físicos ainda têm de investigar os detalhes de como o aumento da temperatura age para ‘soltar’ os vórtices de seus locais e colocá-los em movimento. Mais pesquisas sobre a dinâmica de vórtices em estruturas de Abrikosov provavelmente seguirão. Esta linha de pesquisa é fundamental para a compreensão da física dos supercondutores, bem como para avaliar as perspectivas de novos tipos de componentes de microeletrônica.





segunda-feira, 29 de dezembro de 2014

Supercondutores ultrafinos dão um passo (Ultrathin Superconductors Take a Step Up)




http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.247004


Filmes de metal de apenas um átomo de espessura ou dois podem se tornar supercondutores em temperaturas próximas do zero absoluto. No entanto, nestes materiais bidimensionais, pequenas imperfeições, como alterações na elevação de um átomo pode bloquear o fluxo das supercorrentes. Um novo estudo de vórtices em filmes de metal supercondutores fornece a primeira evidência direta de que defeitos atômicos se comportam como junções Josephson - estruturas feitas de dois supercondutores separados por uma barreira isolante. Os resultados implicam que os defeitos atômicos permitem o fluxo de supercorrentes a uma velocidade limitada, o que pode torná-los úteis como elementos funcionais em futuros dispositivos supercondutores 2D.
       Em 2010, físicos descobriram que filmes metálicos adsorvidos na superfície de silício poderiam se comportar como supercondutores. A descoberta veio como uma surpresa, uma vez que se esperava que as flutuações quânticas interrompessem a supercondutividade em estruturas 2D. Uma grande quantidade de pesquisa agora é dedicada a testar quão grande é a robustez desta supercondutividade. Imperfeições atômicas e outros defeitos de superfície normalmente têm pouco efeito sobre supercondutores volumétricos (3D), mas claramente influenciam o comportamento de materiais ultrafinos.
       Takashi Uchihashi e seus colegas realizaram medidas usando a microscopia de tunelamento por varredura em filmes de índio depositados em superfícies de silício. Especificamente, a equipe estudou a formação de vórtices viajando em torno de um circuito fechado que aparece em certos supercondutores quando um campo magnético externo é aplicado. Os pesquisadores observaram que a maioria dos vórtices era circular com um núcleo interior não supercondutor. No entanto, os vórtices localizados ao longo dos defeitos atômicos estavam em forma elíptica, e seus núcleos eram supercondutores. As simulações numéricas mostraram que esse comportamento era consistente com as imperfeições atômicas fornecendo um acoplamento Josephson entre diferentes patamares do filme.






domingo, 28 de setembro de 2014

Matéria de Vórtices em Supercondutores









Excelente seminário do professor Clécio Clemente do Departamento de Física da UFPE. São apresentados conceitos básicos da supercondutividade, da dinâmica de vórtices e resultados de pesquisa desenvolvida sobre a matéria de vórtices.
        Para mais informações sobre o professor Clécio Clemente, acesse: http://www.ufpe.br/df/index.php?option=com_content&view=article&id=295%3Aclecio-clemente-de-souza-silva&catid=31&Itemid=220




quarta-feira, 27 de março de 2013

Artigos + Citados de Pesquisadores Brasileiros (papers most cited of brazilian researchers)




Abaixo segue uma lista dos artigos mais citados da literatura de pesquisadores nacionais que desenvolvem trabalhos com a supercondutividade. A pesquisa foi feita analisando o currículo Lattes de vários nomes de referência no Brasil. O currículo Lattes disponibiliza um recurso em que é possível ordenar os artigos publicados por número de citações em três bases distintas: Web of Science, Scopus e Scielo. A sequência de artigos mostrada abaixo e o número de citações de cada um deles foi obtido verificando prioritariamente os dados do Web of Science. Destacado(s) em vermelho está(ão) o(s) nome(s) do(s) pesquisador(es) brasileiro(s) de cada trabalho. Nos artigos em que só há autores nacionais, todos os nomes aparecem em preto.
O número de citações que é mostrado na lista contém dados das bases Web of Science e Scielo, respectivamente. É preciso levar em conta que a pesquisa foi feita no dia 27/03/2013, logo, estes dados precisam ser atualizados constantemente. Portanto, os índices abaixo não são definitivos. Há também uma dependência direta com a atualização feita pelos próprios pesquisadores brasileiros em seus respectivos currículos Lattes. Mesmo assim, os dados servem como referência de um modo geral.



1º) CAMPBELL, L. J.; DORIA, M. M.; KOGAN, V. G. Vortex Lattice Structure in Uniaxial Superconductors. Physical Review B - Solid State, v. 38, p. 2439, 1988.
Citações: 272|117


2º)  EKIN, J. W.; BRAGINSKI, A. I.; PANSON, A. J.; JANOCKO, M. A.; CAPONE, D. W.; ZALUZEC, N.; FLANDERMEYER, B.; de LIMA OF; HONG, M.; KWO, J.; LIOU, S. H. Evidence For Anisotropy Limitation On The Transport Critical Current In Polycristalline YBa2Cu3O7. Journal of Applied Physics, v. 62, p. 4821-4827, 1987.
Citações: 250|39


3º)  VONDEL, J. Van de; DE SOUZA SILVA, C. C.; ZHU, B. Y.; MORELLE, M.; MOSHCHALKOV, V. V. Vortex-Rectification Effects in Films with Periodic Asymmetric Pinning. Physical Review Letters, Estados Unidos, v. 94, n.057003, p. 1-4, 2005.
Citações: 116|9


4º)  KÜMMEL, R.; GUNSENHEIMER, U.; NICOLSKY, R. Andreev Scattering Of Quasiparticle Wave Packets And Current-Voltage Characteristics Of Superconducting Metallic Weak Links. Physical Review B - Condensed Matter and Materials Physics, Estados Unidos, v. 42, p. 3992-4009, 1990.
Citações: 111|58


5º)  de LIMA OF; RIBEIRO, R. A.; AVILA, M. A.; CARDOSO, C. A.; COELHO, A. A. Anisotropic superconducting properties of aligned MgB2 crystallites. Physical Review Letters, v. 86, p. 5974-5977, 2001.
Citações: 110|114


6º)  GRANATO, ENZO; KOSTERLITZ, J. M. Quenched disorder in Josephson-junction arrays in a transverse magnetic field. Physical Review B - Condensed Matter and Materials Physics, v. 33, n.9, p. 6533-6536, 1986.
Citações: 93|50


7º)  PUREUR, P.; COSTA, R. M.; SCHAF, J.; RODRIGUES, P.; KUNZLER, J. V. Critical and Gaussian Conductivity Fluctuations in YBCO. Physical Review. B. Solid State. (Cessou em 1978. Cont. 1098-0121 Physical Review. B, Condensed Matter and Materials Physics), New York, v. 47, p. 11420-11423, 1993.
Citações: 90


8º)  PROZOROV, R.; GIANNETTA, R.; CARRINGTON, A.; ARAUJO-MOREIRA, F. Meissner-London state in superconductors of rectangular cross section in a perpendicular magnetic field. Physical Review. B, Condensed Matter. (Cessou 1997. Cont. 1098-0121 Physical Review. B, Condensed Matter and Materials Physics), v. 62, p. 115-118, 2000.
Citações: 84|85


9º)  DORIA, M. M.; GUBERNATIS, J. E.; RAINER, D. Viriral Theorem for Ginzburg-Landau Theories with Potential Applications to Numerical Studies of Type II Superconductors. Physical Review B - Solid State, v. 39, p. 9573, 1989.
Citações: 84|60


10º)  CARDOSO, C. A.; ARAUJO-MOREIRA, F. M.; AWANA, V. P. S.; E. TAKAYAMA-MUROMACHI; de LIMA OF; H. YAMAUCHI; M. KARPPINEN Spin Glass Behavior in RuSr2Gd1.5Ce0.5Cu2O10. Physical Review. B, Condensed Matter and Materials Physics, v. 67, n.020407, p. 020407, 2003.
Citações: 74


11º)  DORIA, M. M.; GUBERNATIS, J. E.; RAINER, D. Soving the Ginzburg-Landau Equations by Simulated Annealing. Physical Review B - Solid State, v. 41, p. 6335, 1990.
Citações: 73|44


12º)  Aczel, A.; Baggio-Saitovitch, E.; Budko, S.; Canfield, P.; Carlo, J.; Chen, G.; Dai, Pengcheng; Goko, T.; Hu, W.; Luke, G.; Luo, J.; Ni, N.; Sanchez-Candela, D.; Tafti, F.; Wang, N.; Williams, T.; Yu, W.; Uemura, Y. Muon-spin-relaxation studies of magnetic order and superfluid density in antiferromagnetic NdFeAsO, BaFe2As2, and superconducting Ba1-xKxFe2As2. Physical Review. B, Condensed Matter and Materials Physics, v. 78, p. 214503, 2008.
Citações: 63


13º)  Baelus, B.; Cabral, L.; Peeters, F. Vortex shells in mesoscopic superconducting disks. Physical Review. B, Condensed Matter and Materials Physics, Estados Unidos, v. 69, n.064506, p. 064506, 2004.
Citações: 61|61


14º)  Goko, T.; Aczel, A.; Baggio-Saitovitch, E.; Budko, S.; Canfield, P.; Carlo, J.; Chen, G.; Dai, Pengcheng; Hamann, A.; Hu, W.; Kageyama, H.; Luke, G.; Luo, J.; Nachumi, B.; Ni, N.; Reznik, D.; Sanchez-Candela, D.; Savici, A.; Sikes, K.; Wang, N.; Wiebe, C.; Williams, T.; Yamamoto, T.; Yu, W.; Uemura, Y. Superconducting state coexisting with a phase-separated static magnetic order in (Ba,K)Fe2As2, (Sr,Na)Fe2As2, and CaFe2As2. Physical Review. B, Condensed Matter and Materials Physics, v. 80, p. 024508, 2009.
Citações: 58


15º)  JURELO, A. R.; CASTILLO, I. A.; ROJAS, J. R.; FERREIRA, L. M.; GHIVELDER, L.; PUREUR, P.; R JUNIOR, P. Coherence transition in granular high temperature superconductors. Physica C, Amsterdam, v. 311, p. 133-139, 1999.
Citações: 59|58


16º)  EARLY, E. A.; ALMASAN, C. C.; JARDIM, R. F.; MAPLE, M. B. Double resistive superconducting transition in Sm2-xCexCuO4. Physical Review. B, Condensed Matter. (Cessou 1997. Cont. 1098-0121 Physical Review. B, Condensed Matter and Materials Physics), v. 47, p. 433-441, 1993.
Citações: 48|31


17º)  Cabral, L.; Baelus, B.; Peeters, F. From vortex molecules to the Abrikosov lattice in thin mesoscopic superconducting disks. Physical Review. B, Condensed Matter and Materials Physics, Estados Unidos, v. 70, n.144523, p. 144523, 2004.
Citações: 46|47


18º)  DORIA, M. M.; SATIJA, I. I. Quasiperiodicity And Long Ranse Order In A Magnetic System. Physical Review Letters, v. 60, p. 444, 1988.
Citações: 46|14


19º)  BALACHANDRAN, U.; SHI, D.; D. I. dos SANTOS; GRAHAN, S. A.; PATEL, M. T.; TANI, B.; VANDERVOORT, K.; CLAUSS, H.; POEPPEL, R. B. 120 K Superconductivity in the (Bi,Pb)-Sr-Ca-Cu-O System. Physica. C, Superconductivity, EUA, v. 156, n.4, p. 649-651, 1988.
Citações: 46|5

segunda-feira, 25 de março de 2013

Artigos mais citados da literatura (papers most cited in the literature)





Pesquisa realizada no site Web of Science em 21/03/2013, usando os seguintes termos: superconducting, superconductivity, superconductors, vortices. Estes são os artigos mais citados da literatura, segundo o mecanismo de busca Web of Science. Todos os trabalhos mostrados abaixo possuem acima de 1000 citações. Naturalmente, esses números variam com o tempo e uma atualização constante é necessária. Curiosamente, o artigo mais citado da literatura na área da supercondutividade é o de BEDNORZ e MULLER, trabalho este que lhes rendeu o prêmio Nobel de Física em 1987 pela descoberta dos high-TC. O segundo trabalho mais citado é o da teoria BCS. Este também rendeu o premio Nobel de Física aos seus autores em 1972. Observando a lista completa, é possível notar algumas coisas bem interessantes e curiosas. Veja você mesmo!


1) BEDNORZ, JG; MULLER, KA, Possible High-Tc Superconductivity in the Ba-La-Cu-O System.  ZEITSCHRIFT FUR PHYSIK B - CONDENSED MATTER, 64, 2, 189-193 (1986). DOI: 10.1007/BF01303701
Citado: 8,423 vezes


2) BARDEEN, J; COOPER, LN; SCHRIEFFER, JR, Theory of Superconductivity. PHYSICAL REVIEW, 108, 5, 1175-1204 (1957). DOI: 10.1103/PhysRev.108.1175
Citado: 6,321 vezes


3) ANDERSON, PW, The Resonating Valence Bond State in La2CuO4 and Superconductivity. SCIENCE, 235, 4793, 1196-1198 (1987). DOI:10.1126/science.235.4793.1196
Citado: 5,133 vezes


4) WU, MK; ASHBURN, JR; TORNG, CJ; et al., Superconductivity At 93-K in a new Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure. PHYSICAL REVIEW LETTERS, 58, 9, 908-910 (1987). DOI: 10.1103/PhysRevLett.58.908
Citado: 4,732 vezes


5) BLATTER, G; FEIGELMAN, MV; GESHKENBEIN, VB; et al., Vortices in High-Temperature Superconductors. REVIEWS OF MODERN PHYSICS, 66, 4, 1125-1388 (1994). DOI: 10.1103/RevModPhys.66.1125
Citado: 3,735 vezes


6) Nagamatsu, J; Nakagawa, N; Muranaka, T; et al., Superconductivity at 39 K in Magnesium Diboride. NATURE, 410, 6824, 63-64 (2001). DOI: 10.1038/35065039
Citado: 3,575 vezes


7) NAMBU, Y; JONALASINIO, G, Dynamical Model of Elementary Particles Based on an Analogy With Superconductivity .1. PHYSICAL REVIEW, 122, 1, 345-358 (1961). DOI: 10.1103/PhysRev.122.345
Citado: 3,423 vezes


8) Kamihara, Yoichi; Watanabe, Takumi; Hirano, Masahiro; et al. Iron-Based Layered Superconductor La[O1-XFx]FeAs (X=0.05-0.12) with Tc=26 K, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 130, 11, 3296 (2008). DOI: 10.1021/ja800073m
Citado: 3,239 vezes


9) Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; et al., The Electronic Properties of Graphene. REVIEWS OF MODERN PHYSICS, 81, 1, 109-162 (2009). DOI: 10.1103/RevModPhys.81.109
Citado: 3,141 vezes 


10) MCMILLAN, WL, Transition Temperature of Strong-Coupled Superconductors. PHYSICAL REVIEW, 167, 2, 331-& (1968). DOI: 10.1103/PhysRev.167.331
Citado: 3,088 vezes


11) BEAN, CP, Magnetization of Hard Superconductors. PHYSICAL REVIEW LETTERS, 8, 6, 250-& (1962).  DOI: 10.1103/PhysRevLett.8.250
Citado: 2,780 vezes


12) BEAN, CP, Magnetization of High-Field Superconductors. REVIEWS OF MODERN PHYSICS, 36, 1P1, 31-& (1964).  DOI: 10.1103/RevModPhys.36.31
Citado: 2,779 vezes


13) Imada, M; Fujimori, A; Tokura, Y, Metal-Insulator Transitions. REVIEWS OF MODERN PHYSICS, 70, 4, 1039-1263 (1998).  DOI: 10.1103/RevModPhys.70.1039
Citado: 2,585 vezes


14) MAEDA, H; TANAKA, Y; FUKUTOMI, M; et al., A New High-Tc Oxide Superconductor Without a Rare-Earth Element. JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 27, 2, L209-L210 (1988).  DOI: 10.1143/JJAP.27.L209
Citado: 2,448 vezes


15) ZHANG, FC; RICE, TM, Effective Hamiltonian for the Superconducting Cu Oxides. PHYSICAL REVIEW B, 37, 7, 3759-3761 (1988). DOI: 10.1103/PhysRevB.37.3759
Citado: 2,313 vezes


16) HEBARD, AF; ROSSEINSKY, MJ; HADDON, RC; et al., Superconductivity at 18-K in Potassium-Doped C-60. NATURE, 350, 6319, 600-601 (1991). DOI: 10.1038/350600a0
Citado: 2,298 vezes


17) BLONDER, GE; TINKHAM, M; KLAPWIJK, TM, Transition From Metallic to Tunneling Regimes in Superconducting Micro-Constrictions - Excess Current, Charge Imbalance, and Super-Current Conversion. PHYSICAL REVIEW B, 25, 7, 4515-4532 (1982). DOI: 10.1103/PhysRevB.25.4515
Citado: 2,038 vezes


18) TRANQUADA, JM; STERNLIEB, BJ; AXE, JD; et al., Evidence for Stripe Correlations of Spins and Holes in Copper-Oxide Superconductors. NATURE, 375, 6532, 561-563 (1995). DOI: 10.1038/375561a0
Citado: 1,994 vezes


19) FISHER, DS; FISHER, MPA; HUSE, DA, Thermal Fluctuations, Quenched Disorder, Phase-Transitions, and Transport in Type-II Superconductors. PHYSICAL REVIEW B, 43, 1, 130-159 (1991). DOI: 10.1103/PhysRevB.43.130
Citado: 1,946 vezes


20) Pendry, JB; Holden, AJ; Stewart, WJ; et al., Extremely low frequency plasmons in metallic mesostructures. PHYSICAL REVIEW LETTERS, 76, 25, 4773-4776 (1996).  DOI: 10.1103/PhysRevLett.76.4773
Citado: 1,870 vezes


21) HAMALAINEN, M; HARI, R; ILMONIEMI, RJ; et al., Magnetoencephalography - Theory, Instrumentation, and Applications to Noninvasive Studies of the Working Human Brain. REVIEWS OF MODERN PHYSICS, 65, 2, 413-497 (1993). DOI: 10.1103/RevModPhys.65.413
Citado: 1,850 vezes 


22) Berger, L, Emission of spin waves by a magnetic multilayer traversed by a current. PHYSICAL REVIEW B, 54, 13, 9353-9358 (1996). DOI: 10.1103/PhysRevB.54.9353
Citado: 1,802 vezes


23) CAMPBELL, AM; EVETTS, JE, Flux Vortices and Transport Currents in Type II Superconductors. ADVANCES IN PHYSICS, 21, 90, 199-& (1972).  DOI: 10.1080/00018737200101288
Citado: 1,155 vezes


24) BARDEEN, J; STEPHEN, MJ, Theory of Motion of Vortices in Superconductors. PHYSICAL REVIEW, 140, 4A, 1197-& (1965).
Citado: 1,082 vezes

Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!