Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador estaneno. Mostrar todas as postagens
Mostrando postagens com marcador estaneno. Mostrar todas as postagens

domingo, 9 de agosto de 2015

Estaneno: A um passo da supercondutividade a temperatura ambiente




Redação do Site Inovação Tecnológica -  06/08/2015

O estaneno é um isolante topológico, um tipo de material no qual os elétrons comportam-se de forma diferente quando se movem no interior ou nas bordas do material. [Imagem: Feng-feng Zhu et al. - 10.1038/nmat4384]


Supercondutor quente
Os físicos acreditam estar a um passo de comprovar a previsão teórica da existência de um material supercondutor a temperatura ambiente.
Há dois anos, uma equipe das universidades Tsinghua (China) e Stanford (EUA) previu a existência do estaneno, uma folha de estanho com um único átomo de espessura - assim como o grafeno é uma folha monoatômica de carbono.
Embora já se saiba que o grafeno foi apenas o começo nesse reino emergente de materiais monoatômicos, o que causou alvoroço é que os cálculos teóricos indicam que o estaneno será um supercondutor a temperatura ambiente.
Os supercondutores, materiais que conduzem eletricidade sem perdas, já têm muitos usos, mas precisam de temperaturas criogênicas para atingir o estado de resistência elétrica zero, o que inibe seu uso na maioria das aplicações.

Estaneno real
Agora, o grupo conseguiu pela primeira vez sintetizar o estaneno em laboratório. Eles criaram um vapor de estanho em um ambiente de vácuo e deixaram que os átomos se depositassem sobre um substrato, comprovando que o elemento realmente se cristaliza na forma prevista, formando o tão esperado estaneno.
O problema é que a deposição até agora só funcionou bem em uma placa de telureto de bismuto, um material que interfere com o estaneno, impedindo que a amostra fosse utilizada para comprovar a supercondutividade.
A equipe, assim como vários outros grupos ao redor do mundo, continuam em busca de uma forma mais simples e mais robusta de produzir o material, que eles acreditam funcionar como um isolante topológico, um tipo de material no qual os elétrons comportam-se de forma diferente quando se movem no interior ou nas bordas do material.
Em um isolante topológico, os portadores de carga, como os elétrons, viajam em uma direção que é dependente do seu spin. A corrente elétrica não é dissipada porque a maioria das impurezas não afeta o spin, não retardando os elétrons, advindo assim a supercondutividade.


Bibliografia

Epitaxial growth of two-dimensional stanene
Feng-feng Zhu, Wei-jiong Chen, Yong Xu, Chun-lei Gao, Dan-dan Guan, Can-hua Liu, Dong Qian, Shou-Cheng Zhang, Jin-feng Jia, Nature Materials, Vol.: Published online. DOI: 10.1038/nmat4384





terça-feira, 26 de novembro de 2013

Estaneno: primeiro supercondutor a temperatura ambiente? (first superconductor at room temperature?)






A adição de átomos de flúor (amarelo) a uma camada atômica de estanho - o estaneno - poderá resultar no primeiro supercondutor a temperatura ambiente. [Imagem: Yong Xu/Tsinghua University/Greg Stewart/SLAC]

Estaneno

Em tempos de materiais-maravilha à base de carbono, parecia que nada poderia superar os nanotubos - até surgir o grafeno. Mas agora cientistas estão pedindo que o grafeno dê um passinho à frente, cedendo espaço para o recém-chegado "estaneno".
         Estaneno é uma folha unidimensional - formada por apenas uma camada de átomos - do metal estanho, símbolo químico Sn. O estaneno promete ser nada menos do que o primeiro supercondutor à temperatura ambiente, transportando eletricidade com 100% de eficiência.
         É o que garantem Yong Xu e seus colegas das universidades Tsinghua (China) e Stanford (EUA):

“O estaneno poderá aumentar a velocidade e diminuir o gasto de energia das futuras gerações de chips de computador, caso nossas previsões sejam confirmadas por experimentos que estão em andamento em vários laboratórios ao redor do mundo,” disse o professor Shou-cheng Zhang, coordenador do estudo.

Isolantes topológicos

Os resultados são fruto do trabalho com os isolantes topológicos, uma classe de materiais muito promissores devido à sua característica de conduzir eletricidade apenas na sua superfície externa, mas não em seu interior.
Em 2011, outra equipe já havia apontado que um isolante topológico mais complexo poderia ser magnético e supercondutor.
         Isso porque, ao se destacar a camada externa desses materiais, eles devem conduzir eletricidade com 100% de eficiência, ou seja, são supercondutores.

“A magia dos isoladores topológicos é que, pela sua própria natureza, eles forçam os elétrons a mover-se em faixas definidas, sem qualquer limite de velocidade, como nas autobans alemãs,” explicou Zhang. “Enquanto eles estiverem na via rápida - as bordas ou as superfícies - os elétrons vão viajar sem resistência.”

Mas nenhum dos isolantes topológicos conhecidos até agora se tornaria um condutor perfeito de eletricidade à temperatura ambiente.
         O que os novos cálculos indicam é que isto pode ser possível com uma única camada de átomos de estanho - um estaneno.


Supercondutores no interior de chips resultarão em processadores que consomem menos energia e esquentam menos. [Imagem: Yong Xu et al./PRL]


Chips supercondutores

Os cálculos indicam que uma única camada de estanho seria um isolante topológico não apenas sob temperaturas agradáveis para o ser humano, mas também a temperatura mais altas.
         Por exemplo, com a adição de átomos de flúor ao estanho, sua gama de funcionamento se estenderia a pelo menos 100 graus Celsius.
         Segundo os pesquisadores, se os experimentos confirmarem seus cálculos teóricos, o estaneno deverá estrear na conexão interna dos chips, permitindo a troca de dados mais rápida e gastando muito menos energia - o que se traduziria em processadores que esquentam menos.
         É claro que, para isso, terão que ser vencidas as mesmas dificuldades de fabricação de um material 2D com que atualmente se deparam os pesquisadores que tentam trabalhar com o grafeno.


Bibliografia:

Large-Gap Quantum Spin Hall Insulators in Tin Films
Yong Xu, Binghai Yan, Hai-Jun Zhang, Jing Wang, Gang Xu, Peizhe Tang, Wenhui Duan, Shou-Cheng Zhang
Physical Review Letters
Vol.: 111, 136804
DOI: 10.1103/PhysRevLett.111.136804
http://arxiv.org/abs/1306.3008



Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!