Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador spin-density-wave. Mostrar todas as postagens
Mostrando postagens com marcador spin-density-wave. Mostrar todas as postagens

sexta-feira, 26 de dezembro de 2014

O spin do elétron pode ser a chave para a supercondutividade de alta temperatura (Electron spin could be the key to high-temperature superconductivity)





Cientistas deram um passo significativo na compreensão da supercondutividade, estudando os eventos quânticos estranhos em um material supercondutor único.
        Cupratos são materiais com uma grande promessa de alcançar a supercondutividade a temperaturas mais elevadas (-120 ° C). Isto poderia significar eletricidade de baixo custo sem perda de energia. Intensa pesquisa centrou-se na compreensão da física dos cupratos na esperança de que podemos desenvolver supercondutores a temperatura ambiente. Cientistas usaram uma técnica de ponta para descobrir a maneira como os cupratos tornam-se supercondutores. O trabalho foi publicado na Nature Communications.
        Supercondutores convencionais são materiais que conduzem eletricidade sem resistência em temperaturas que se aproximam do zero absoluto (-273,15 °C ou 0 K). Sob estas condições, os elétrons do material juntam-se e formam casais de elétrons que são chamados de “pares de Cooper”, e desta forma fluem sem resistência. Geralmente, os pares de Cooper se formam a temperaturas muito baixas, e apenas quando os átomos vibram e criam uma força de atração entre os elétrons.
        No entanto, existe uma classe de supercondutores onde pares de Cooper não se formam por causa de vibrações dos átomos. Estes supercondutores são materiais à base de cobre chamados “cupratos”, e em temperaturas normais, elas são, na verdade, isolantes elétricos e ímãs.
        A popularidade dos cupratos vem do fato de serem supercondutores a temperaturas muito mais elevadas do que os outros materiais: -123,15 °C (150 K). Isso faz dos cupratos excelentes candidatos para a supercondutividade cotidiana. Contudo, estudos anteriores sugeriram que cupratos não se tornam supercondutores como outros materiais, o que coloca a questão: como a supercondutividade surge em cupratos?
        Uma equipe de pesquisadores liderada por Marco Grioni usou uma técnica espectroscópica de ponta para explorar a supercondutividade dos cupratos. Os cientistas usaram uma técnica chamada de Resonant Inelastic X-ray Scattering (espalhamento ressonante inelástico de raios-X, tradução livre), usada para investigar a estrutura eletrônica de materiais. Este método de alta resolução foi capaz de monitorar o que acontece com os elétrons de uma amostra de cuprato quando ele se torna supercondutor.
        “Normalmente, supercondutores odeiam magnetismo”, diz Grioni. “Ou você tem um bom ímã ou um bom supercondutor, mas não ambos. Cupratos são muito diferentes e realmente surpreendeu todos, porque são normalmente isolantes e ímãs, mas tornam-se supercondutores quando alguns elétrons extras são adicionados por ajustes suaves de sua composição química”.
        O ingrediente chave do magnetismo é uma propriedade dos elétrons chamada spin, que pode ser considerado como o momento de um pião. Spins podem interagir uns com os outros e criar ondas que viajam através do material. Quando os materiais magnéticos são perturbados, ondas de spin são criadas e espalhados ao longo do seu volume. Essas ondas de spin são impressões digitais reveladoras da interação e estrutura magnética.
        Mesmo quando eles se tornam supercondutores, os cupratos não perdem suas propriedades magnéticas. “Algo do ímã permanece no supercondutor, e pode desempenhar um papel importante no aparecimento de supercondutividade” diz Grioni. “Os novos resultados fornecem uma ideia melhor de como os spins interagem nestes fascinantes materiais”.
        Os resultados sugerem uma nova compreensão da supercondutividade em cupratos e, possivelmente, em outros supercondutores de alta temperatura. Ao revelar o papel das interações de spin, pode abrir o caminho para a interposição de supercondutores de alta temperatura para o mundo real.






sábado, 22 de fevereiro de 2014

Supercondutividade é ligada e desligada com magnetismo (magnetic domains reveals spatially inhomogeneous superconductivity)


Redação do Site Inovação Tecnológica - 18/02/2014


Fonte:
http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=supercondutividade-ligada-desligada-magnetismo&id=010115140218&ebol=sim#.UwkPj86aegZ 




http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=supercondutividade-ligada-desligada-magnetismo&id=010115140218&ebol=sim#.UwkPj86aegZ

Dependendo da orientação do campo magnético (H), a onda de densidade de spins (setas vermelhas e cinzas) pode se mover em direções diferentes, modulando a supercondutividade. [Imagem: Simon Gerber/PaulScherrer Institute]



Chave magnética para a supercondutividade


A supercondutividade e os campos magnéticos normalmente são vistos como rivais - campos magnéticos muito fortes destroem o estado supercondutor. Isso pelo que se sabia até agora. Um novo estado supercondutor que acaba de ser descoberto na verdade só surge quando o material é submetido a um forte campo magnético externo. Desta forma, a supercondutividade do material pode ser controlada - ligada e desligada - alterando a direção do campo magnético.

O material - uma liga complexa de cério, cobalto e índio (CeCoIn5) - é supercondutor a temperaturas muito baixas, mas tem sua supercondutividade destruída quando submetido a um campo magnético de 12 Tesla. O que se descobriu agora é que, antes que isso ocorra, surge um segundo estado supercondutor, o que significa que passam a coexistir dois estados supercondutores diferentes no mesmo material.

Simon Gerber e seus colegas do Instituto PaulScherrer, na Suíça, verificaram que o magnetismo faz emergir uma ordem antiferromagnética adicional, isto é, uma parte dos momentos magnéticos - pense neles como ímãs elementares - no material aponta num sentido, enquanto o restante aponta no sentido oposto. A interpretação mais provável para isso é que um novo estado quântico deve estar associado a esta ordem magnética.

“O comportamento observado no material é completamente inesperado e certamente não é um efeito puramente magnético,” explica o professor Michel Kenzelmann, líder da equipe. “Esta é uma clara indicação de que, neste material, o novo estado supercondutor ocorre junto com a onda de densidade de spin, o que também é esperado com base nos argumentos de simetria.”

Embora o novo estado ocorra em condições muito específicas e difíceis de obter, a possibilidade de controlar diretamente estados quânticos - sejam eles quais forem - pode ser importante no campo dos computadores quânticos.

“Ainda que esse material em particular provavelmente não será usado por causa das baixas temperaturas e fortes campos magnéticos necessários, nossos experimentos mostram com o que este tipo de controle pode se parecer,” disse Simon Gerber.


Bibliografia:

Switching of magnetic domains reveals spatially inhomogeneoussuperconductivity. Simon Gerber, Marek Bartkowiak, Jorge L. Gavilano, Eric Ressouche, Nikola Egetenmeyer, Christof Niedermayer, Andrea D. Bianchi, Roman Movshovich, Eric D. Bauer, Joe D. Thompson, Michel Kenzelmann. Nature Physics, Vol.: Published online DOI: 10.1038/nphys2833.

Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!