Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador charge order. Mostrar todas as postagens
Mostrando postagens com marcador charge order. Mostrar todas as postagens

sexta-feira, 23 de janeiro de 2015

A supercondutividade que quer sair do frio (charge ordering in the electron-doped superconductor)




 
Redação do Site Inovação Tecnológica - 23/01/2015

 O ordenamento de cargas em cupratos é um fenômeno geral e não está particularmente associado com as cargas positivas. [Imagem: Eduardo H. da Silva Neto et al. - 10.1126/science.1256441]


        Físicos descobriram pela primeira vez um fenômeno conhecido como ordenamento de cargas, envolvido diretamente com a supercondutividade, em cristais de óxido de cobre dopados com elétrons.
        A descoberta é um passo fundamental rumo à tão sonhada obtenção da resistência elétrica zero a temperatura ambiente.

Ordenamento de cargas
        A supercondutividade ocorre quando os elétrons se juntam em pares e viajam através da rede cristalina de um material sem resistência - esse material é então chamado de supercondutor.
   Em compostos de óxido de cobre, ou cupratos, a supercondutividade é obtida em cristais que possuem elétrons de mais ou de menos.
        Quando elétrons são adicionados, o processo é chamado dopagem de elétrons; quando elétrons são removidos, o processo é chamado de dopagem de lacunas - as quasipartículas portadoras de cargas positivas.
Os físicos sabem já há alguns anos que, em óxidos de cobre dopados com lacunas, um evento chamado ordenamento - ou ordenação - de cargas compete com a supercondutividade quando as temperaturas começam se distanciar das proximidades do zero absoluto, fazendo com que não se consiga a supercondutividade fora da zona das temperaturas criogênicas.
        Em um cristal, os átomos formam redes periódicas altamente organizadas, o mesmo ocorrendo com seus elétrons. Mas, em alguns materiais, uma instabilidade faz com que alguns elétrons se reorganizem para formar novos padrões periódicos de carga, padrões que não acompanham os átomos subjacentes - isto é chamado de ordenamento de cargas.
        Em cupratos dopados com lacunas, o ordenamento de cargas perturba o delicado padrão necessário para a supercondutividade, fazendo o material oscilar entre os dois estados até que a temperatura esfrie o suficiente para que a supercondutividade vença.


Eduardo H. da Silva Neto e Andrea Damascelli no UBC's Quantum Matter Institute. Crédito: University of British Columbia.


Supercondutividade a temperatura ambiente
Agora, Eduardo da Silva Neto e seus colegas do Instituto Canadense de Pesquisas Avançadas detectaram o ordenamento de cargas em cupratos dopados com elétrons, mostrando que o fenômeno é mais geral e não está particularmente associado com as cargas positivas.
        Além disso, o fenômeno foi verificado a uma temperatura mais elevada do que aquela na qual ocorre uma fase conhecida como pseudogap - a fase de transição para a supercondutividade - contrariando o paradigma atual da área, que defende a vinculação entre o pseudogap e o ordenamento de cargas.
        Segundo a equipe, esses novos resultados sugerem uma nova direção para a compreensão da supercondutividade e abrem caminhos para uma supercondutividade a temperatura ambiente - se o ordenamento de cargas é um fenômeno mais geral, e não está ligado à baixa temperatura, pode ser possível influenciar a batalha entre ele e a supercondutividade.
        “A [importância da] descoberta do ordenamento de cargas foi enorme. Ele de fato causou um boom no campo, dando-lhe uma nova vida nos últimos anos,” comentou Eduardo. “Ele nos dá esperança de que, se for possível ajustá-lo ou manipulá-lo no sistema, a temperatura crítica para a supercondutividade pode ser mais alta.”
        Há pouco mais de um mês, outra equipe documentou a supercondutividade a temperatura ambiente em uma cerâmica - mas o fenômeno dura apenas algumas frações de segundo.


Bibliografia:
Charge ordering in the electron-doped superconductor Nd2-xCexCuO4. Eduardo H. da Silva Neto, Riccardo Comin, Feizhou He, Ronny Sutarto, Yeping Jiang, Richard L. Greene, George A. Sawatzky, Andrea Damascelli. Science, Vol.: 347 Issue 6219, pgs 282-285. DOI: 10.1126/science.1256441.






terça-feira, 23 de dezembro de 2014

Universalidade da ordem de carga em cupratos (universality of charge order in cuprate superconductors)




Estas são as estruturas cristalinas do HgBa2CuO4+ e do YBa2Cu3O6+


Ordem de carga foi estabelecida em outra classe de cuprato, destacando a importância do fenômeno como uma propriedade geral desses materiais de alta TC


A descoberta em 1986 da supercondutividade em cupratos, uma classe de materiais cerâmicos, impulsionou um esforço impressionante de pesquisa em todo o mundo. Estes materiais ainda detêm o recorde de temperatura crítica e por isso são chamados supercondutores de alta-TC, apesar do fato de alta-TC significar apenas -140 °C. Embora esse valor pareça bastante baixo, é, de fato, muito alto em comparação com os supercondutores clássicos, onde é necessário resfriar o material perto da temperatura do zero absoluto, -274 °C, para o surgimento da supercondutividade. O salto emocionante da TC com a descoberta dos high-TC ainda nutre esperança de que algum dia, a supercondutividade seja possível em temperatura ambiente.

O fenômeno da supercondutividade é bem compreendido para os supercondutores clássicos. Quando não estão no estado supercondutor, supercondutores clássicos se comportam como metais, e a supercondutividade emerge desse estado metálico pelo emparelhamento de elétrons. O emparelhamento de portadores de carga é também o que está por trás da supercondutividade nos cupratos. No entanto, estes supercondutores são materiais cerâmicos, onde até mesmo o estado não-supercondutor (normal) é pouco compreendido, muito menos o mecanismo por trás do emparelhamento dos portadores de carga. É por isso que novos insights sobre as propriedades dos cupratos ainda mantém os cientistas animados - mesmo quase 30 anos após a descoberta da supercondutividade de alta TC.

Os cupratos vieram como um zoológico de materiais com abreviações do tipo LBCO, YBCO, LSCO, BSCO, e muitos mais, com fórmulas químicas de La2-xBaxCuO4, YBa2Cu3O6, La2-xSrxCuO4, Bi2Sr2-xLaxCuO6. Todos estes materiais têm uma característica comum: os átomos de cobre e oxigênio são dispostos em planos, formando objetos quase bidimensionais. Introduzir portadores de carga nos planos de oxigênio e cobre não resulta em um comportamento metálico simples. Em vez disso, é observada complexidade de fases incomuns em torno de supercondutividade, e como o estado supercondutor emerge a partir desses estados exóticos não tem explicação até agora.

      Um dos fenômenos observados em cupratos de alta TC é a chamada ordem de carga. Aqui, os portadores de carga que são introduzidos nos materiais cerâmicos tendem a formar um padrão regular de listras nos planos de cobre e oxigênio. Sendo colocado em um arranjo regular, torna o portador de carga menos móvel e impede a formação do estado supercondutor: ordem de carga é antagônica à supercondutividade. Naturalmente, isto é da maior importância para explorar os limites da supercondutividade e compreender o fenômeno em si. Ordem de carga foi observada em uma das classes de cupratos já em 1995. Ocorreu algum tempo para ser revelado que muitas outras classes de cupratos exibem o mesmo comportamento, e só nos últimos anos, evidências de um fenômeno ubíquo foram acumuladas, com a observação importante de ordem de carga no YBCO em 2012. Todas estas experiências forneceram evidências de que esse fenômeno é uma propriedade comum dos portadores de carga nos planos de oxigênio e cobre dos cupratos.

Iniciado por pesquisadores de Minnesota, uma equipe internacional de cientistas identificou agora ordem de carga no HgBa2CuO4, enfatizando este comportamento universal: HgBa2CuO4 é um cuprato com uma estrutura cristalina bastante simples que superconduz a temperaturas tão elevadas quanto -175 °C. Outro resultado importante do estudo é a descoberta de que a ordem de carga está intimamente relacionada com outra propriedade do material. Quando um campo magnético muito alto é aplicado, a supercondutividade é destruída, e a resistência elétrica sobe e desce com a mudança de campo magnético, conhecido como oscilações quânticas. Encontrar uma conexão universal entre o período destas oscilações quânticas e o período espacial da ordem de carga é uma das realizações do estudo. A associação dessas observações aparentemente distintas em um material tão complexo é de extrema importância, uma vez que contribui para dizer qual efeito é importante e qual é espúrio.

Uma parte importante desta pesquisa foi realizada com o difratômetro XUV do HZB, empregando o método particularmente sensível de ressonância de difração de raios-X macio. Este método já foi utilizado com sucesso para detectar fracas ordem de carga em uma série de materiais. Os resultados agora foram publicados na revista Nature Communications. “Depois de décadas de pesquisa, os estados incomuns da matéria nos cupratos e sua relação com o fenômeno da supercondutividade de alta TC ainda estão confundindo os cientistas”, diz o Dr. Eugen Weschke do Department Quantum Phenomena in Novel Materials, “a observação de ordem de carga neste modelo de sistema limpo acrescenta uma peça importante para a sistemática dos cupratos, e estamos felizes de ter contribuído para esses estudos com uma série de experimentos aqui no HZB.






Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!