Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador LHC. Mostrar todas as postagens
Mostrando postagens com marcador LHC. Mostrar todas as postagens

quarta-feira, 20 de abril de 2016

Está pronto o primeiro magneto do futuro do LHC




Redação do Site Inovação Tecnológica -  15/04/2016


Foram 10 anos do projeto à construção deste eletroímã supercondutor de 1,5 metro. Agora será necessário construir uma versão muito maior. [Imagem: G. Ambrosio/P. Ferracin/E. Todesco]



LHC do futuro

       Se você acha que o LHC, o maior acelerador de partículas e o maior experimento científico da história contém o supra-sumo da tecnologia, você está certo.
       Mas também é necessário saber que os físicos e engenheiros do CERN acabam de terminar o protótipo de uma das peças fundamentais para o “LHC do futuro”.
       A proposta é que dezenas de magnetos supercondutores similares a este protótipo sejam instalados em uma atualização radical da tecnologia do LHC, em 2026, que deverá aumentar a luminosidade do acelerador de partículas em 10 vezes.
       Construído por uma equipe internacional, o eletroímã supercondutor, chamado “Quadrupolo MQXF1”, mede apenas 1,5 metro de comprimento, mas sua versão final deverá substituir 5% dos ímãs responsáveis pela focalização e direção dos feixes de partículas quando o LHC se transformar no “LHC de Alta Luminosidade”, ou HL-LHC (High-Luminosity Large Hadron Collider).


Supercondutor de nióbio

       Os ímãs do atual LHC são feitos de uma liga de nióbio e titânio (NbTi), um supercondutor que pode operar dentro de um campo magnético de até 10 teslas antes de perder a sua supercondutividade. Este novo ímã é feito de nióbio e estanho (Nb3Sn), um supercondutor capaz de transportar corrente sem resistência através de um campo magnético de até 20 teslas.
       Mas o ganho também tem seus custos. O Nb3Sn precisa ser recozido a 650º C para que sua estrutura seja alterada e ele se torne um supercondutor. O problema é que isso também o torna tão quebradiço quanto uma cerâmica.



Detalhe do magneto, onde se podem ver as bobinas supercondutoras. [Imagem: Reidar Hahn/Fermilab]



       Assim, construir um ímã desse tamanho usando um material mais frágil do que uma xícara de chá não é uma tarefa fácil. Os físicos e engenheiros gastaram 10 anos projetando e aperfeiçoando um processo que finalmente permitiu formatar, recozer e estabilizar as bobinas.
       “Nós estamos lidando com uma nova tecnologia que pode ir muito além do que era possível quando o LHC foi construído. Esta nova tecnologia magnética irá tornar possível o projeto do HL-LHC,” disse Giorgio Apollinari, membro da equipe.
       Agora a equipe vai usar seu novo processo produtivo para fabricar ímãs cada vez maiores, até atingir a escala necessária para seu uso no LHC, cujos magnetos supercondutores medem 14,3 metros.




sexta-feira, 7 de agosto de 2015

A supercondutividade e os aceleradores de partículas



Por Flora Balieiro e Tárcio Fabrício


Muitas das descobertas sobre o misterioso mundo subatômico seriam inviáveis sem a existência dos supercondutores


Foi Demócrito o primeiro a dizer que os materiais eram constituídos de partículas minúsculas. A essas partículas o filósofo deu o nome de átomos. O termo vem do grego e significa “aquilo que não pode ser dividido em pedaços”, um termo bastante plausível para a ideia de átomo que existia na época. Os conhecimentos sobre o átomo mudaram desde então e, muito embora o termo cunhado por Demócrito não tenha caído em desuso, a fissão nuclear mostrou que era possível dividir o que antes era indivisível.
Partículas ainda menores que os prótons, nêutrons e elétrons foram descobertas e, a partir da década de 1950, com a construção dos primeiros aceleradores de partículas, iniciou-se uma corrida em busca das chamadas partículas elementares, sendo algumas delas de difícil detecção e de existência extremamente efêmera – em alguns casos, menos de um bilionésimo de segundo.
Genericamente falando, aceleradores de partículas são equipamentos que fornecem energia a partículas subatômicas eletricamente carregadas, fazendo com que elas atinjam altas velocidades. Nesses aceleradores, as partículas são dispostas em feixes, possibilitando que atinjam velocidades próximas à da luz! Esse tipo de acelerador normalmente é usado para se conhecer melhor as partículas subatômicas por meio de colisões entre elas.
Nemitala Added, do Departamento de Física Nuclear da Universidade de São Paulo (USP), explica que os trabalhos na área de Física Nuclear, tanto básica quanto aplicada, lidam com colisões nucleares para investigar a estrutura nuclear ou para o desenvolvimento de estudos interdisciplinares. “Analogamente a um jogo de bilhar, a colisão nuclear seria representada pelo choque entre as bolas e o taco teria a função de dar energia (acelerar) a uma das bolas em direção à outra”, ilustra o pesquisador.
Dentro dessa classe de aceleradores, podemos distinguir dois tipos básicos: os aceleradores lineares e os aceleradores circulares. Nos aceleradores lineares, as partículas percorrem rotas retilíneas no vácuo – em extensos tubos de cobre – antes de colidirem com o alvo, onde existem detectores específicos para registrar as partículas e a radiação que são liberadas durante a colisão.
Os aceleradores lineares utilizam eletroímãs para manter as partículas em um feixe estreito, já que, por terem carga elétrica de mesma natureza, elas tendem a se repelir.



Seção retilínea do LHC: Duas seções dessas são responsáveis por acelerar o feixe de partículas enquanto os 27 km curvos restantes servem somente para redirecionar o feixe (Foto Denis Damazio).



Mas onde é que entram os supercondutores nessa história? Bem, alguns tipos de acelerador exigem a utilização de campos magnéticos fortíssimos para funcionar, o que seria praticamente impossível de conseguir sem a utilização de bobinas supercondutoras.
Um exemplo desses aceleradores, do tipo Linac, está instalado no Instituto de Física da Universidade de São Paulo. O Linac é um tipo de acelerador linear que utiliza radiofrequência para transferir energia ao feixe de partículas a ser estudado. “No Linac são utilizados ressoadores supercondutores para otimizar a produção de campos elétricos com valores acima de 5 ou 6 MV/m usando uma potência de radiofrequência baixa, tipicamente da ordem de alguns Watts”, comenta Added. No laboratório da USP são desenvolvidos diversos tipos de pesquisa, que vão desde o campo da Física Nuclear até Física Ambiental e Biologia Nuclear.
“Na pesquisa básica usamos reações nucleares para entender o processo de produção dos elementos disponíveis no Universo. Alguns experimentos nos permitem simular a nucleossíntese de elementos, levando a um melhor entendimento da evolução e surgimento do Universo. No campo da Física aplicada, as áreas de interesse são diversas, indo desde a investigação de elementos-traços em materiais até estudos relacionados a ambientes com muita radiação, como o aeroespacial”, acrescenta o pesquisador.
A dinâmica de colisões relacionada ao surgimento e evolução do Universo também é estudada nos laboratórios do CERN (Conselho Europeu para Pesquisa Nuclear), que comporta a maior máquina aceleradora de partículas que já foi construída: o LHC. Essa estrutura supercondutora de 27 km de extensão é um tipo de acelerador circular. Nos aceleradores circulares, o princípio de funcionamento é semelhante ao dos lineares, mas com a diferença de que o trajeto é curvo. Nesses aceleradores, o grupo de partículas é lançado em um percurso cíclico, sendo acelerado a cada volta antes de colidir.
        O LHC – sigla para Large Hadron Colidor – está instalado no subsolo a quase 100 metros da superfície e possui dimensões equivalentes a cinco jatos jumbo. Esse laboratório foi desenvolvido para recriar as condições que existiram frações de segundo após a grande explosão (Big Bang) que originou o Universo. Durante o Big Bang, diversas partículas foram criadas e, embora algumas delas ainda persistam – tais como prótons, neutrons e elétrons –, muitas outras, mais energéticas, já não existem em seu estado natural. Por meio da colisão interpartículas é possível produzir traços que podem nos levar à origem do Universo.
        Outros tipos de aceleradores não necessitam de supercondutores, como é o caso do acelerador de luz síncrotron localizado no Laboratório Nacional de Luz Síncrotron (LNLS), em Campinas. Nesse tipo de acelerador as partículas utilizadas são os elétrons, que emitem radiação ao serem acelerados. O LNLS, diferentemente do LHC e do Linac, estuda essa radiação liberada, chamada luz síncrotron. Analisando o espectro emitido pelos elétrons, os cientistas podem inferir características atômicas e moleculares dos materiais estudados.
        No LHC, onde são necessárias colisões de alta energia, em vez de elétrons são acelerados prótons – partículas duas mil vezes mais pesadas e que emitem menos luz ao serem aceleradas. Essas colisões são capazes de gerar partículas mais pesadas, as quais remetem àquelas criadas durante o surgimento do Universo.

Supercondutores

        Fabiano Colauto, do Departamento de Física da Universidade Federal de São Carlos (UFSCar), explica que, sob altas velocidades em uma trajetória curva, as partículas sofrem a ação da força centrípeta. Para manter os prótons no anel de 27 km do LHC, são usados campos magnéticos muito intensos (duzentas mil vezes o campo da Terra) ao longo do caminho. Os campos magnéticos também fazem o papel de manter o feixe de partículas coeso, pois como elas têm a mesma carga elétrica, sem a atuação do campo elas se repeliriam.


 
Seção de um condutor em cobre - maior diâmetro - ao lado de um cabo supercondutor: ambos são capazes de suportar uma corrente de 13 mil Amperes necessárias à operação do LHC (Foto Denis Damazio).


Denis Damazio, pesquisador brasileiro que trabalha no ATLAS, um dos quatro detectores encontrados no CERN, explica que para criar um campo forte o bastante é necessário aplicar uma corrente elétrica muito intensa e, para isso, a utilização dos supercondutores é imprescindível. “No LHC a corrente aplicada é da ordem de 13 mil amperes. Um material comum não resistiria ao calor gerado pela passagem dessa corrente. Os prótons recebem campo elétrico em uma sessão retilínea curta, onde são acelerados, para em seguida o campo magnético gerado pelo supercondutor redirecionar as partícula. O que acontece é que o grupo de partículas passa por essa sessão reta 11 mil vezes por segundo, sendo aceleradas a cada volta. A grande vantagem dos materiais supercondutores é que eles não oferecem resistência à corrente elétrica e, por isso, não estão sujeitos ao superaquecimento.”
Os campos magnéticos gerados pelo supercondutor no CERN não são utilizados somente para permitir a colisão entre as partículas. No ATLAS, eles também permitem a identificação de cargas. “Como produtos da colisão de prótons são geradas diversas partículas. Uma delas, a partícula Z, logo após ser criada, emite um elétron e um pósitron. Para distinguir essas duas partículas emitidas são usados campos magnéticos gerados por supercondutores. Assim, ao passarem pelo campo, as partículas positivas (pósitrons) irão entortar sua trajetória para uma direção, enquanto as negativas (elétrons) irão na direção oposta”, comenta o pesquisador do ATLAS. “Observando a inclinação dessa trajetória, também é possível inferir a velocidade da partícula. Uma partícula muito rápida irá descrever uma trajetória praticamente reta, enquanto uma partícula mais lenta irá entortar sua trajetória”, acrescenta Damazio.


 
  
Painel mostrando a temperatura de um dos magnetos supercondutores na bancada de testes (1.9 K ou -271 ºC) no CERN (Foto DenisDamazio).


Segundo o pesquisador, o que encarece o uso de supercondutores é principalmente o custo do próprio material, embora mantê-lo nas temperaturas necessárias à supercondutividade também seja bastante caro. Os materiais utilizados nas bobinas normalmente tornam-se supercondutores à temperatura do hélio líquido. “Um litro de hélio, hoje, custa aproximadamente US$ 20. Existem formas de se recuperar o hélio utilizado para resfriar o sistema, mas nesse processo sempre existem perdas e, por isso, o material tem de ser reposto constantemente”, explica Fabiano Colauto, da UFSCar. Ainda assim, o uso de supercondutores no LHC foi a solução mais prática encontrada, tanto do ponto de vista técnico quanto do econômico.
Colauto esclarece que a escolha de bobinas supercondutoras em detrimento de bobinas construídas com condutores comuns depende de vários fatores. “Bobinas supercondutoras dependem de um sistema de resfriamento contínuo, mas são mais leves e compactas que as comuns”, exemplifica. “Cada material supercondutor tem suas próprias características; por isso, a escolha do material a ser utilizado também é consequência de um balanço, que deve levar em conta a temperatura de resfriamento, a corrente máxima (crítica) que ele suporta e o campo magnético máximo. No Linac, o material supercondutor escolhido para a região interna dos ressoadores foi o Nióbio, o mesmo utilizado no ATLAS. O fato do Brasil ser o maior produtor de Nióbio do mundo favoreceu a escolha”, conta o professor Added, da USP.
        Os cabos supercondutores do LHC são feitos de uma liga de Nióbio e Titânio (NbTi), um material que é estruturalmente favorável às necessidades mecânicas do acelerador e que mantém suas propriedades supercondutoras mesmo com a passagem de altas correntes elétricas. “As ligas metálicas são preferíveis aos materiais cerâmicos para a construção de bobinas supercondutoras, pois são mais maleáveis, enquanto supercondutores cerâmicos podem sofrer trincas com a constante variação de temperatura a que são submetidas as bobinas. Além disso, os supercondutores metálicos possuem propriedades diamagnéticas mais simples de serem estudadas e mais previsíveis que as encontradas nos materiais cerâmicos”, explica Colauto. “Mas a intenção no futuro é que os materiais cerâmicos substituam os materiais metálicos na construção de dispositivos supercondutores, já que a temperatura crítica para manifestar supercondutividade nos cerâmicos é mais alta. Assim, o nitrogênio líquido (77 K) poderá ser utilizado no lugar do hélio líquido (4,2 K), que é muito mais caro e de difícil obtenção”, conclui.


Por dentro do CERN



Diagrama do complexo de aceleradores do CERN: A linha destacada em laranja, marcada para Gran Sasso, foi responsável pela "descoberta" de neutrinos viajando acima da velocidade da luz (Foto Denis Damazio).







sábado, 11 de abril de 2015

Maior acelerador de partículas do mundo voltou a funcionar

 
 
http://www.publico.pt/ciencia/noticia/maior-acelerador-de-particulas-do-mundo-retoma-actividade-1691407

 

A próxima tarefa do LHC será tentar decifrar o mistério da matéria escura, o material invisível e indetectável de que é feito cerca de 27% do Universo.

A Organização Europeia para Pesquisa Nuclear (European Organization for Nuclear Research - CERN), em Genebra, anunciou neste domingo a reabertura do LHC (Large Hadron Collider), uma enorme máquina subterrânea onde dois feixes de partículas de altas energias colidem a velocidades próximas a da luz para tentar reproduzir o que se passou a seguir à criação do Universo, há 13.800 milhões de anos. Esteve dois anos parado, para obras de manutenção e renovação.

O LHC tinha reabertura prevista para o mês passado, mas um curto-circuito num dos eletromagnetos principais, detectado em 21 de março, adiou a operação. Esta manhã, os engenheiros do acelerador enviaram dois feixes de prótons (partículas subatômicas com cargas positivas, que se encontram no núcleo atômico) nos tubos do túnel a 100 metros de profundidade, na fronteira entre a Suíça e a França, com 27 quilômetros de circunferência do LHC.

Nestes tubos, os prótons são lançados em sentidos opostos para colidirem uns contra outros, guiados pelos ímãs supercondutores, que produzem um campo magnético que conduz as partículas. Atingem altíssimas velocidades e altas energias. Nestas colisões são criadas novas partículas, que são detectadas por sensores e analisadas pelos cientistas.

No primeiro período de funcionamento, entre 2010 e 2013, foi detectado o bóson de Higgs - a tão procurada partícula que permite explicar porque todas as outras adquirem massa. Detectá-la era o principal objetivo da construção do LHC. Era a última peça que faltava para confirmar o Modelo Padrão, a teoria que descreve as partículas fundamentais e as forças que exercem entre elas. A descoberta foi anunciada em 4 de Julho de 2012.

Um dos esforços nesta próxima fase é tentar investigar a natureza da matéria escura e da energia escura, que juntas constituem 95% do Universo (os 5% restantes correspondem à matéria que conhecemos, os átomos que formam as estrelas, os planetas e as pessoas). No entanto, a matéria e a energia escuras só são detectadas pela influência que têm na matéria normal.

Após as obras de renovação, o acelerador de partículas do CERN funcionará com uma energia muito maior, produzindo colisões de 13 TeV (teraelétrons-volt), em vez dos 8 TeV que alcançou na primeira fase. Este aumento permitirá aos cientistas ampliar o campo de investigação para procurar novas partículas subatômicas e validar ou não certas teorias, como as relativas à matéria e energia escuras, explica o CERN, em comunicado.

 

sábado, 7 de fevereiro de 2015

Eletroímãs supercondutores do LHC: grandes desafios da engenharia (Superconducting electromagnets of the LHC)







http://home.web.cern.ch/topics/large-hadron-collider


A maioria das pessoas está familiarizada com ímãs, mas podem não saber que estes são parte integrante de quase todos os modernos aceleradores de partículas. Esses ímãs não são o mesmo que você põe na geladeira. Embora tenham um polo norte e sul, assim como seus ímãs fazem, ímãs de acelerador exigem um pouco de engenharia.

     Quando uma partícula carregada eletricamente, como um próton, se move através de um campo magnético constante, descreve um percurso circular. O tamanho do círculo depende da força dos magnetos e da energia do feixe. Aumentar a energia, o anel se torna maior; aumentar a força dos ímãs, o anel fica menor.

     O Large Hadron Collider é um acelerador, uma palavra crucial que nos lembra que podemos usá-lo para aumentar a energia das partículas do feixe. Se a força dos ímãs permanecer a mesma, então quando aumentarmos a energia do feixe, o tamanho do anel terá que aumentar. Uma vez que o tamanho do anel permanece necessariamente o mesmo, é preciso aumentar a força dos ímãs quando a energia do feixe é aumentada. Por essa razão, os aceleradores de partículas usam um tipo especial de ímã.

     Quando uma corrente elétrica passa através de um fio, ela cria um campo magnético; a intensidade do campo magnético é proporcional à quantidade de corrente elétrica. Ímãs criados dessa forma são chamados de eletroímãs. Ao controlar a quantidade de corrente, podemos fazer eletroímãs de qualquer força que queremos. Podemos até mesmo inverter a polaridade do ímã, invertendo a direção da corrente.

     Dada a ligação entre corrente elétrica e campo magnético, é claro que precisamos de grandes correntes em nossos ímãs aceleradores. Para conseguir isso, usamos os supercondutores, materiais que perdem sua resistência à corrente elétrica quando são arrefecidos o suficiente. E ‘resfriar’ é um eufemismo. Em 1,9 Kelvin, os centros dos ímãs do LHC são um dos lugares mais frios do universo – mais frio do que a temperatura do espaço entre as galáxias.

     Dado o papel central dos ímãs em aceleradores modernos, os cientistas e engenheiros do Fermilab e CERN estão constantemente trabalhando para torná-los ainda mais fortes. Embora os principais ímãs do LHC gerem um campo magnético cerca de 800.000 vezes o da Terra, aceleradores futuros exigirão ainda mais. A tecnologia de eletroímãs é uma parte vibrante e crucial de futuros dos laboratórios.




quarta-feira, 24 de dezembro de 2014

CERN: o maior acelerador de partículas do mundo terá quase o dobro da energia em 2015






Fotografia © AFP PHOTO / FABRICE COFFRINI


        O Grande Colisor de Hádrons (LHC) teve uma paragem técnica há dois anos e será reativado em março.

        O maior acelerador de partículas do mundo, parado há dois anos, vai voltar a funcionar em 2015, com quase o dobro da energia da primeira fase de exploração, anunciou hoje a Organização Europeia para a Pesquisa Nuclear/CERN.

        O LHC teve uma paragem técnica há dois anos, e a primeira etapa para repor a sua operacionalidade foi realizada, com sucesso, na terça-feira, informou em comunicado o CERN, do qual Portugal é um dos países-membros.

        O segundo período de exploração, com início previsto para março, daquele que é o acelerador de prótons mais potente, terá uma duração de três anos, adianta a nota, disponível no portal da organização.

        A paragem técnica visou preparar o conjunto da máquina supercondutora, de 27 quilômetros de comprimento, localizada no subsolo, para funcionar com energia “cerca de duas vezes superior à do primeiro período de exploração”, que confirmou a existência do Bóson de Higgs.

        O acelerador foi arrefecido e atingiu praticamente a sua temperatura de exploração nominal, isto é, 1,9 graus acima do zero absoluto.

        “É praticamente uma máquina nova”, declarou o diretor de aceleradores e tecnologia do CERN, Frédérick Bordry, citado no comunicado.

        Para o diretor-geral do CERN, Rolf Heuer, o LHC, com “esta energia inédita”, vai “abrir novos horizontes para a Física e futuras descobertas”.




sexta-feira, 2 de agosto de 2013

Aplicações dos supercondutores (applications of superconductors)



       
       Segue abaixo uma pequena lista contendo algumas das mais importantes aplicações práticas dos sistemas supercondutores. O objetivo desse post é fornecer apenas uma ideia geral sobre onde são empregados estes materiais. Para uma visão mais profunda, vejas os links nas laterais desse blog e encontre livros para download gratuito como, por exemplo, Applications of High-Tc Superconductivity. Obs.: clicando nos links e nas imagens, a página será direcionada para a fonte das informações. Veja cada link e enriqueça ainda mais seus conhecimentos.





        
             Componentes SQUID                              SQUID

O SQUID é o equipamento mais sensível para a detecção de campos magnéticos, capaz de medir intensidades da ordem de 10–15 T. O campo da terra é em torno de 10–6 T e o do cérebro humano é por volta de 10–13 T. Em geral, o SQUID é usado para realizar medidas magnéticas de várias espécies de materiais, sendo por isso frequentemente denominado de magnetômetro SQUID. Sua capacidade de detecção é proporcionada pelas famosas junções Josephson.


Esquema básico de uma junção Josephson

Brian David Josephson previu que seria possível o tunelamento de pares de Cooper entre dois supercondutores separados por uma distância menor que 10 Å, na ausência de uma voltagem externa. A confirmação experimental de sua previsão veio no ano de 1963 por Anderson e Rowell. Uma junção Josephson é formada por dois supercondutores fracamente acoplados através de uma fina película isolante. A película pode ser feita a partir da oxidação do filme da base ou pela deposição de camadas adicionais de um metal oxidado, de um semicondutor ou de um metal normal. Quando utilizado material isolante, a espessura da barreira é de alguns nanômetros. Para uma barreira feita de material semicondutor ou normal, ela possui espessura de 10 a 100 vezes maior.
No SQUID, a corrente que entra no dispositivo é dividida em duas componentes que atravessam as duas JJ na forma de correntes de pares de Cooper. Quando o SQUID é submetido a um campo magnético, cada corrente varia periodicamente, passando por máximos consecutivos à medida que o fluxo magnético passa por múltiplos do quantum fundamental, . Dessa maneira, por meio de um circuito contador, pode-se determinar o número de máximos que a corrente atravessa e conhecer assim o fluxo magnético final.
Outra aplicação amplamente divulgada do SQUID é a magnetoencefalografia. Uma técnica que permite mapear o campo magnético gerado pela atividade cerebral, através de sensores que atuam em conjunto com um SQUID.





Para atingir sua temperatura ideal de condução, o cabo supercondutor é resfriado com nitrogênio líquido.[Imagem: Nexans]

        Apesar de alguns materiais apresentaram altas temperaturas críticas e elevadas densidades de corrente, um grande desafio está na confecção de fios. Os cupratos ainda são os campeões da TC, mas por serem materiais cerâmicos, ainda é impraticável substituir os comuns fios de cobre por supercondutores. Apesar disso, várias pesquisas estão dando ótimos resultados, como é o caso do maior cabo supercondutor do mundo. Instalado na Alemanha, unindo duas subestações na cidade de Ruhr e projetado para suportar uma carga de 40 MW (megawatts), o cabo será formado por seções concêntricas operando a 10.000 volts. Segundo engenheiros do Instituto de Tecnologia Karlsruhe, que projetaram o cabo, ele será o primeiro a incorporar um sistema de proteção contra sobrecargas, com limitador de corrente. O cabo supercondutor terá 1 km de extensão - para se ter uma ideia, o recorde mundial de intensidade de corrente elétrica foi batido com um cabo supercondutor de 30 metros de comprimento. (Fonte: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=maior-cabo-supercondutor-mundo)


Sistema de cabos supercondutores instalados em Nova York
Imagem da American Superconductor



Espectrômetro RMN da Oxford

        Esta técnica se baseia em gerar um campo magnético e orientar o spin dos núcleos (ou magnetização dos núcleos), após isto são gerados pulsos magnéticos que irão perturbar a magnetização dos spins e é medido o tempo que o spin demora para voltar à magnetização inicial. A intensidade do campo magnético necessária para orientar o núcleo dos átomos é obtida com o uso de supercondutores. No interior do equipamento, materiais supercondutores imersos em hélio líquido permitem gerar campos magnéticos altíssimos pela passagem de corrente elétrica.

LHC: Large Hadron Collider – Grande Colisor de Hádrons


Anel do LHC
       
        O Grande Colisor de Hádrons (LHC) do CentroEuropeu de Pesquisas Nucleares (CERN) é o maior acelerador de partículas do mundo. O LHC consiste de um anel de 27 km de magnetos supercondutores com uma série de estruturas de aceleração para aumentar a energia das partículas ao longo do caminho. O enorme campo magnético necessário para acelerar as partículas a altíssimas velocidades próximas à da luz é gerado a partir dos supercondutores.

Outras aplicações

Limitadores de corrente



Motor


MagLev – trens de levitação magnética







Separador magnético industrial



Pesquisas em fusão nuclear



        Ainda há muitas outras aplicações dos materiais supercondutores que não foram mencionadas aqui. A maioria delas não faz parte do cotidiano do cidadão comum, como a computação quântica, por exemplo. É provável que nos próximos 20 anos a supercondutividade se aproxime mais da vida cotidiana e traga maiores benefícios pra humanidade. Espero e torço para que pesquisadores brasileiros tenham grande contribuição nesta jornada.

Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!