Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador iron-pnictide. Mostrar todas as postagens
Mostrando postagens com marcador iron-pnictide. Mostrar todas as postagens

quarta-feira, 18 de janeiro de 2017

Nova liga supercondutora alterna entre fases (Copper stripes help iron pnictide lock in insulating state)



A nova liga do Rice Center for Quantum Material’s é o primeiro supercondutor à base de ferro que pode ser continuamente ajustado da fase supercondutora à fase isolante de Mott. Crédito: Jeff Fitlow/Rice University


Físicos do Rice Center for Quantum Material’s (RCQM) criaram um novo material à base de ferro que oferece pistas sobre as origens microscópicas da supercondutividade de alta temperatura. O material que contém os elementos ferro, sódio, cobre e arsênio foi obtido pelo estudante Rice Yu Song no laboratório do físico Pengcheng Dai.
O material foi obtido pela mistura de ingredientes em uma atmosfera de argônio puro selada em recipientes de niobio e ‘cozida’ a quase 1.000 ºC. A liga exibe camadas em que ferro e cobre se separam em listras alternadas. Essa característica é crítica para a utilidade do material em explicar as origens da supercondutividade de alta temperatura, disse o diretor do RCQM, Qimiao Si.
“Ao formar esse padrão regular, Yu Song removeu fisicamente a desordem do sistema, e isso é crucial para ser capaz de dizer algo significativo sobre o que está acontecendo eletronicamente”, disse Si, um físico teórico que trabalhou para explicar as origens da supercondutividade de alta temperatura e fenômenos semelhantes há quase duas décadas.
“O problema central da supercondutividade de alta temperatura é entender a relação precisa entre esses dois estados fundamentais da matéria (isolante e supercondutor) e a transição de fase entre eles”, disse Dai, professor de física e astronomia em Rice. “A mudança macroscópica é evidente, mas as origens microscópicas do comportamento estão abertas à interpretação, em grande parte porque há muitas variáveis ​​em jogo, e a relação entre elas é simultaneamente sinérgica e não-linear”.
Dai afirma que duas escolas de pensamento “se desenvolveram desde o início, um deles foi o campo itinerante, que argumenta que ambos os estados, em última instância, surgem de elétrons itinerantes. Afinal, esses materiais são metais, mesmo que sejam metais pobres”. O outro campo é o localizado, que argumenta que a física fundamentalmente nova surge devido às interações elétron-elétron no ponto crítico em que os materiais transitam de uma fase para a outra.
As medidas do novo material suportam a teoria localizada. Este sistema é o primeiro membro de uma classe de supercondutores à base de ferro chamados pnictídeos, que podem ser ajustados entre duas fases concorrentes: a fase supercondutora e um ‘isolante de Mott’ na qual os elétrons ficam bloqueados e não fluem.



A estrutura cristalina do novo material em camadas inclui listras alternadas de ferro (azul) e cobre (vermelho). O striping é crítico para a utilidade do material na explicação das origens da supercondutividade de alta temperatura. Crédito: Yu Song/Rice University


“A descoberta que Yu Song fez é que este material é mais correlacionado, o que é evidente devido à fase isolante de Mott”, disse Dai. “Esta é a primeira vez que alguém relata um supercondutor de ferro que pode ser continuamente sintonizado da fase supercondutora à fase isolante de Mott”.
“Nós mostramos que se a interação era fraca, mesmo substituindo 50% do ferro com cobre ainda não seria suficiente para produzir o estado isolante”, disse Si. “O fato de que nossos experimentalistas conseguiram transformar o sistema em isolante de Mott, fornece evidência direta de fortes interações elétron-elétron nos pnictídeos. Isto é um importante passo porque sugere que a supercondutividade deve estar amarrada com estas fortes correlações de elétrons”.



segunda-feira, 23 de fevereiro de 2015

Pesquisadores traçam últimas descobertas de supercondutores à base de ferro (Scientists in China and US chart latest discoveries of iron-based superconductors)



Estrutura cristalina de diversos tipos de supercondutores à base de ferro. A = metal alcalino; Ae = alcalino terroso; Ln = lantanídeo; M = metal de transição



Em um artigo publicado no National Science Review, cientistas comentam as recentes descobertas acerca dos supercondutores à base de ferro (pnictídeos) que possuem elevadas temperaturas de transição (TC). Eles apresentam uma visão geral das propriedades físicas, descrevem a dependência da temperatura de transição com a estrutura cristalina, a interação entre antiferromagnetismo e supercondutividade, e suas propriedades eletrônicas obtidas por espectroscopia de foto-emissão com resolução angular.
        “Tem sido um sonho obter supercondutores de alta-TC ou à temperatura ambiente, o que pode revolucionar a transmissão de energia no mundo”, explicam os pesquisadores. Um impulso para acelerar esta pesquisa foi desencadeado pela descoberta, há quase duas décadas, de um cuprato supercondutor de alta TC. A segunda classe de materiais de alta TC são os supercondutores à base de ferro (pnictídeos), descobertos inicialmente em 2008. A maior TC destes sistemas é 55 K para o SmO1-XFxFeAs.
        Até agora foram descobertas muitas famílias de pnictídeos supercondutores. “Estudar suas propriedades tem sido uma das principais atividades em física da matéria condensada nos últimos anos”, afirmam os autores do estudo.
        Várias técnicas novas e poderosas como espectroscopia de foto-emissão com resolução angular, microscopia de tunelamento, difração de nêutrons, ressonância magnética nuclear etc. foram aplicadas para examinar as propriedades dos novos compostos.
        Os pnictídeos possuem muitas características em comum com os cupratos. Ambos são supercondutores não convencionais no sentido de que fônons não desempenham papel dominante na supercondutividade. Ambos são quase-2D, e sua supercondutividade está na proximidade do antiferromagnetismo. Nos cupratos, a física de baixa energia é descrita por uma única banda, enquanto nos pnictídeos, existem múltiplos orbitais envolvidos. No entanto, alguns aspectos dos cupratos permanecem controversos. Aprofundar o conhecimento dos pnictídeos pode ampliar a compreensão da supercondutividade não convencional e fornecer uma nova rota para encontrar supercondutores a temperaturas mais elevadas. Mapeando avanços recentes, os autores descrevem a estrutura cristalina, a interação entre magnetismo e supercondutividade e a estrutura eletrônica de pnictídeos. No artigo, também são revisadas teorias vigentes sobre a supercondutividade.
Pnictídeos supercondutores estão próximos do antiferromagnetismo (AF), o que sugere que as flutuações de AF são responsáveis ​​pela supercondutividade. Investigar o mecanismo da supercondutividade deve priorizar, em parte, a causa do emparelhamento de elétrons. A descrição teórica da supercondutividade em cupratos e pnictídeos continua a ser um grande desafio. Pnictídeos são materiais multi-banda. Todos os cinco orbitais 3d do Fe hibridizam fortemente com os orbitais 4p do Se e têm contribuição de elétrons condutores itinerantes e localizados.
        Cientistas ainda estão tentando desenvolver uma imagem física clara com ferramentas teóricas confiáveis ​​para tratar um sistema eletrônico com forte acoplamento entre elétrons itinerantes e localizados. É igualmente importante conceber medidas experimentais que poderiam resolver uma série de problemas-chave, que por sua vez poderiam testar teorias sobre a supercondutividade em pnictídeos. Segundo os pesquisadores, “os progressos alcançados nos estudos do mecanismo da supercondutividade em pnictídeos poderiam ter um forte impacto sobre a teoria de sistemas quânticos fortemente correlacionados”.






domingo, 8 de fevereiro de 2015

Encontrada a “impressão digital” dos supercondutores de alta temperatura (High-temperature superconductor 'fingerprint' found)







http://arxiv.org/ftp/arxiv/papers/1402/1402.3714.pdf
“Impressão digital” distinguindo flutuações de spin antiferromagnéticas de flutuações de fônons no LiFeAs. Fonte: http://arxiv.org/ftp/arxiv/papers/1402/1402.3714.pdf



Pesquisadores podem ter encontrado a resposta para um grande desafio em física da matéria condensada: identificar o porquê ocorre a supercondutividade ‘não convencional’. Eles isolaram uma “impressão digital” que identifica flutuações específicas que força os elétrons em pares, tornando o material um supercondutor de alta temperatura.

       A supercondutividade supera a repulsão que ocorre naturalmente entre os elétrons, quantificada pela lei de Coulomb, que normalmente impede seu emparelhamento. Em supercondutores ‘convencionais’, isto é, metais que permitem que os elétrons fluam sem resistência a temperaturas muito próximas do zero absoluto, há bom entendimento do por que acontece a supercondutividade. Nesse caso, o emparelhamento de elétrons é dirigido pela troca de vibrações na estrutura cristalina do material, que se tornam suficientemente fortes para superar a repulsão de Coulomb. Esse mecanismo só funciona em temperaturas extremamente frias em que os elétrons se movem muito lentamente.

       Cerca de três décadas atrás, os físicos começaram a estudar os supercondutores ‘não convencionais’, que 'superconduzem' a temperaturas 100 vezes maior. Isso ainda não é próximo da temperatura ambiente de nenhum lugar, mas o mecanismo do por que isso acontece a tais temperaturas relativamente elevadas é um mistério de longa data, e com profundas implicações para a física quântica.

       Em artigo na Nature Physics, o princípio geralmente aceito que a equipe provou é que pequenos jiggles (‘sacudidas’) de padrões de spin dos elétrons, chamados de flutuações de spin, são o que fazem com que os elétrons formem pares. Nestes supercondutores não convencionais, os elétrons tendem a formar antiferromagnetos, o que significa que os elétrons, visualizadas como pequenos ímãs, tendem a alinhar os polos opostos. Esta tendência, anterior ao início do ordenamento antiferromagnético, provoca jiggles dos spins, com o sistema inteiro querendo formar um padrão fixo.

       O fato dessas flutuações de spin poder fornecer emparelhamento de elétrons foi suspeitado muitas vezes, mas provar tem sido um grande desafio, explicou Eun-Ah Kim, professora de física.

“Os métodos usados para metais simples como o alumínio não servem para os supercondutores de altas temperaturas”, disse ela. Isto é particularmente verdadeiro para uma nova classe de supercondutores convencionais à base de ferro, porque estes materiais são os chamados sistemas de banda múltipla. Isso significa que os elétrons com uma determinada energia pode ter vários valores diferentes do momentum com velocidades radicalmente diferentes.

       A equipe de Kim descobriu como medir a mudança nas energias dos elétrons em momentums particulares no sistema de multibanda devido à influência das flutuações de spin, baseando-se em princípios como a conservação do momentum e da energia - o mesmo princípio que se aplica para as trajetórias de colisão de bolas de bilhar.

       Através de cálculos, eles diferenciaram com êxito a ‘impressão digital’ de flutuações de spin, que é distinta da impressão digital de vibrações da rede que iria se manifestar em uma medição de energia-momentum. A equipe empregou uma técnica de medição de energia-momentum chamada quasiparticle interference imaging, iniciada pelo grupo do professor Seamus Davis, para confirmar a impressão digital das flutuações de spin em supercondutores de arsênico ferro-lítio.

       “A abordagem que adotamos pode levar a aplicações mais amplas e formas de confirmar a ideia”, diz Kim. “O conceito de flutuações antiferromagnéticas mediadoras da supercondutividade não pode ser provada rigorosamente teoricamente; é um desafio que exige experiência e teoria trabalhando juntos”.






domingo, 21 de dezembro de 2014

Estado eletrônico inusitado encontrado em nova classe de supercondutores não convencionais (unusual electronic state found in new class of unconventional superconductors)




Em cima: ondulações estende abaixo a cadeia de átomos quebram a simetria translacional (como um tabuleiro de xadrez com quadrados pretos e brancos), o que causaria pontos extras no padrão de difração (mostrado como pontos vermelhos no padrão de difração subjacente). Abaixo: alongamento ao longo de uma direção quebra a simetria rotacional, mas não a simetria translacional (como um tabuleiro de xadrez com quadrados idênticos, mas esticada em um dos sentidos), sem causar pontos de difração adicionais. Os experimentos provaram que estes novos supercondutores têm o segundo tipo de distribuição de densidade de elétrons, chamado nemático. Crédito da imagem: Ben Frandsen.


        Uma equipe de cientistas do U.S. Department of Energy's (DOE) Brookhaven National Laboratory, Columbia Engineering, Columbia Physics e da Universidade de Kyoto, descobriu uma forma incomum de ordem eletrônica em uma nova família de supercondutores não convencionais. A descoberta, descrita na revista Nature Communications, estabelece uma conexão inesperada entre esse novo grupo de supercondutores de titânio-oxipnictídeos e os mais familiares cupratos e ferro-pnictídeos, fornecendo aos cientistas uma nova família de materiais a partir dos quais eles podem ganhar uma percepção mais profunda dos mistérios da supercondutividade de alta temperatura.
        “Encontrar este novo material é um pouco como um arqueólogo encontrar um novo túmulo do faraó egípcio”, disse Simon Billinge, físico da Universidade de Columbia que liderou a equipe. “À medida que tentar resolver os mistérios por trás da supercondutividade não convencional, precisamos descobrir sistemas diferentes, mas relacionadas para nos dar um quadro mais completo do que está acontecendo, exatamente como um sepulcro novo com tesouros não encontrado antes, dará um retrato mais completo da sociedade egípcia antiga”. Cada nova descoberta de um tema comum entre estes materiais está ajudando os cientistas a desbloquear as peças do quebra-cabeça.
        Um dos maiores mistérios é entender como os elétrons interagem em supercondutores de alta temperatura, por vezes, tentando evitar um ao outro e em outras vezes emparelhando-se – uma característica fundamental que lhes permite transportar corrente sem resistência. Os cientistas que estudam estes materiais em Brookhaven e em outros lugares descobriram tipos especiais de estados eletrônicos, tais como “ondas de densidade de carga”, onde as cargas se agrupam para formar listras e padrões de xadrez. Ambos quebram a “simetria translacional” do material, a repetição da mesmice quando você se move através da superfície (por exemplo, movendo-se através de um tabuleiro de xadrez você se move de quadrados brancos para quadrados pretos).
        Outro padrão observado pelos cientistas nas duas classes mais famosas de supercondutores de alta temperatura é a quebra de simetria rotacional sem mudança na simetria translacional. Neste caso, chamado ordem nemática, cada espaço em branco é o tabuleiro de damas, mas as formas dos espaços são distorcidas de um quadrado para um retângulo; quando você girar e girar em um espaço, seu espaço vizinho é mais próximo ou mais distante, dependendo da direção em sua face. Tendo observado esse estado inesperado nos cupratos e ferro-pnictídeos, os cientistas estavam ansiosos para ver se esta ordem eletrônica incomum também seria observada em uma nova classe de supercondutores de alta temperatura de titânio-oxipnictídeos descobertos em 2013.
        “Esses compostos de titânio-oxipnictídeos são estruturalmente semelhantes aos outros sistemas supercondutores exóticos, e eles tinham todos os sinais reveladores de uma quebra de simetria, como anomalias de resistividade e medidas termodinâmicas. Mas não havia nenhum sinal de qualquer tipo de onda densidade de carga em qualquer medição anterior. Era um mistério”, disse Emil Bozin, cujo grupo no Brookhaven é especialista na busca de simetrias quebradas em locais escondidos. “Foi natural para nós saltar sobre este problema”.
        A equipe procurou o efeito da quebra de simetria rotacional, uma questão que tinha sido levantada por Tomo Uemura de Columbia, utilizando amostras fornecidas por seus colaboradores no grupo de Hiroshi Kageyama da Universidade de Kyoto. Eles realizaram dois tipos de estudos de difração: de nêutrons e de elétrons. “Nós usamos estas técnicas para observar o padrão formado por feixes de partículas filmados através de amostras de pó dos supercondutores sob uma faixa de temperaturas e outras condições para ver se há uma mudança estrutural que corresponde à formação deste tipo especial de estado nemático”, disse Ben Frandsen, estudante de pós-graduação em física na Universidade de Columbia e principal autor do estudo.
Os experimentos revelaram uma distorção da quebra de simetria a baixa temperatura. Um esforço colaborativo entre os experimentalistas e teóricos estabeleceu a natureza nemática particular da ordem. “Crítico neste estudo foi o fato de que nós pudemos trazer rapidamente vários métodos experimentais complementares, juntamente com conhecimentos teórico, por termos a maior parte dos especialistas no laboratório de Brookhaven e fortes colaborações com colegas de Columbia e além”, disse Billinge.
        A descoberta da ‘nematicidade’ em titânio-oxipnictídeos, juntamente com o fato de que suas propriedades químicas e estruturais se conectam às dos supercondutores de alta temperatura (cupratos e ferro-pnictídeos), tornam esses materiais um novo e importante sistema para ajudar a compreender o papel da quebra de simetria eletrônica na supercondutividade. Como Billinge observou: “Esta nova tumba do faraó, na verdade continha um tesouro: nematicidade”.





Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!