Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador dopagem. Mostrar todas as postagens
Mostrando postagens com marcador dopagem. Mostrar todas as postagens

segunda-feira, 6 de fevereiro de 2017

Novo sistema para explorar a supercondutividade (New system for exploring superconductivity)




A descoberta, em 1986, de que um composto à base de cobre conduz eletricidade sem resistência a temperaturas muito mais altas do que os supercondutores convencionais abalou o mundo da física, pois parecia que o santo graal da supercondução à temperatura ambiente estava ao alcance. No entanto, desde a descoberta dos cupratos, a supercondutividade à temperatura ambiente parece um objetivo distante. Além disso, apesar de três décadas de esforço febril, os cientistas não compreendem completamente como os cupratos funcionam.
       Uma classe de materiais que poderia ajudar a desbloquear o mecanismo supercondutor dos cupratos é chamada isolante de Mott. De acordo com a convencional teoria de banda, esses materiais devem conduzir a eletricidade, mas as fortes interações entre seus elétrons fazem com que sejam isolantes. Contudo, eles podem exibir a supercondutividade pelo processo de dopagem com átomos específicos.
       Um dos principais enigmas envolvendo os cupratos (que são isolantes de Mott) é que eles se comportam de modo diferente a depender se eles são dopados com portadores de carga positiva ou negativa. Eles apresentam diferentes propriedades supercondutoras em diferentes condições de dopagem: dopantes com cargas positivas (‘buracos’) ou dopantes com cargas negativas. Os pesquisadores sondariam essa assimetria adicionando buracos ou elétrons a uma amostra, mas a complexa estrutura cristalina da maioria dos cupratos impede isso.
       Agora, Yoshitaka Kawasugi e seus colegas encontraram uma abordagem diferente - usando isolantes de Mott orgânicos em combinação com transistores de efeito de campo. A estrutura de banda mais simples desses cristais orgânicos torna mais fácil detectar a assimetria elétron-buraco. Além disso, podem ser dopados precisamente na mesma amostra aplicando um campo elétrico.


Os cálculos teóricos das propriedades elétricas de um isolante de Mott orgânico revelam que os efeitos assimétricos da dopagem podem agir como um degrau para a obtenção da supercondutividade a alta temperatura. (Imagem: Kazuhiro Seki, Laboratório de Física Computacional de Matéria Condensada RIKEN)


A equipe mediu como os elétrons se moviam no cristal em diferentes concentrações de buracos e de elétrons para várias temperaturas. Quando aplicaram um campo magnético, emergiu uma surpreendente assimetria - os ‘coeficientes Hall’, que quantificam as influências magnéticas, eram três vezes maiores no lado dopado com buracos.
“Quando vi essa assimetria pela primeira vez, achei que a experiência falhara”, lembra Kawasugi. “A dependência detalhada de doping também revelou que algo especial estava acontecendo”, observa.
       Cálculos teóricos ajudaram a descobrir a razão para esta anomalia – o excesso de doping com buraco provocou o estado de ‘pseudogap’. Esta é uma descoberta animadora uma vez que poderia indicar que a supercondutividade não está longe. “Pseudogaps podem ser precursores para o estado supercondutor se a temperatura de transição para o lado dopado com buraco for muito maior do que o caso dopado por elétrons”, diz Kawasugi. “A dopagem adicional de elétrons e buracos pode induzir essa supercondutividade não convencional”.




sexta-feira, 12 de fevereiro de 2016

Pesquisadores descobrem novas propriedades da supercondutividade (Waterloo physicists discover new properties of superconductivity)






 Físicos da Universidade de Waterloo descobriram, num determinado tipo de supercondutor de alta temperatura, evidência experimental do que é conhecido como nematicidade eletrônica - quando nuvens de elétrons se encaixam dentro de uma ordem direcional e alinhada. Os resultados podem eventualmente levar a uma teoria que explique por que a supercondutividade ocorre em temperaturas mais elevadas em certos materiais.
       “Neste estudo, identificamos alguns alinhamentos inesperados dos elétrons - um achado que provavelmente é genérico para os supercondutores de alta temperatura e com o tempo pode vir a ser um ingrediente-chave do problema”, diz David Hawthorn, professor no departamento de Física e Astronomia da Universidade de Waterloo.
Os resultados mostram evidências de nematicidade eletrônica como uma característica universal em supercondutores de alta temperatura (os cupratos). Cupratos são cerâmicas de óxido de cobre, compostas de camadas bidimensionais ou planos de cobre e oxigênio, separadas por outros átomos. Eles são conhecidos como os melhores supercondutores de alta temperatura. Mas esses supercondutores de alta temperatura tem sido um desafio para prever, muito menos explicar.
       “Tornou-se evidente nos últimos anos que os elétrons envolvidos na supercondutividade podem formar padrões, listras ou tabuleiros de damas, e exibem diferentes simetrias – alinhando preferencialmente ao longo de uma direção. Esses padrões e simetrias levam a consequências importantes para a supercondutividade - eles podem competir, coexistir ou até mesmo melhorar a supercondutividade,” diz David Hawthorn.
       Os cientistas usaram uma nova técnica chamada espalhamento de raios-x macio, no Canadian Light Source, para sondar o espalhamento dos elétrons em camadas específicas da estrutura cristalina do cuprato. Especificamente, eles observaram os planos individuais de CuO2 onde a nematicidade eletrônica ocorre, contra as distorções cristalinas entre os planos de CuO2.
       A nematicidade eletrônica acontece quando os orbitais dos elétrons se alinham como uma série de hastes (bastões). O termo nematicidade comumente se refere a cristais líquidos quando se alinham espontaneamente sob um campo elétrico. Neste caso, os orbitais dos elétrons entram no estado nemático quando a temperatura cai abaixo de um ponto crítico.
       Os cupratos podem se tornar supercondutores pela adição de elementos que removem elétrons do material, um processo conhecido como dopagem. Um material pode ser otimamente dopado para alcançar a supercondutividade a uma temperatura mais elevada e mais acessível, mas para estudar como a supercondutividade ocorre, os físicos frequentemente trabalham com o material “underdoped”, ou seja, quando o nível de dopagem é menor do que o necessário para maximizar a temperatura supercondutora.
       Os resultados deste estudo mostram que provavelmente a nematicidade eletrônica ocorre em todos os cupratos “underdoped”.
       Os físicos também querem compreender a relação da nematicidade com um fenômeno conhecido como flutuações nas ondas de densidade de carga (charge density wave). Normalmente, os elétrons estão numa boa, distribuídos uniformemente, mas o ordenamento de carga pode fazer com que os elétrons se agrupem, como ondulações em uma lagoa. Isso configura uma competição, em que o material está flutuando entre os estados supercondutor e normal até que a temperatura esfrie o suficiente para a supercondutividade prevalecer.
       Embora não exista ainda um consenso sobre o porquê a nematicidade eletrônica ocorre, ela pode vir a apresentar outro botão para sintonizar a busca por um supercondutor que funcione à temperatura ambiente.
       “O trabalho futuro vai abordar como a nematicidade eletrônica pode ser sintonizada, ao modificar a estrutura cristalina”, diz David Hawthorn.



terça-feira, 12 de janeiro de 2016

Controle de elétrons produz supercondutividade



Redação do Site Inovação Tecnológica -  08/01/2016


Os elétrons foram controlados dentro do material monocamada por campos elétricos e magnéticos aplicados externamente. [Imagem: L. J. Li et al. - 10.1038/nature16175]


Físicos desenvolveram uma forma de usar campos elétricos e magnéticos externos para controlar elétrons de forma seletiva no interior de materiais com espessura atômica.
       Embora toda a tecnologia moderna, dos motores e lâmpadas aos computadores, funcione com base na eletricidade, aproveitando o fluxo de elétrons, manipular elétrons individualmente é outra história - com tantas outras possibilidades de aplicações.
       “Os elétrons não são só pequenos e rápidos, eles naturalmente se repelem devido à sua carga elétrica. Eles obedecem às estranhas leis da física quântica, tornando-se difícil controlar seu movimento diretamente,” explica o físico brasileiro Antônio Hélio de Castro Neto, atualmente na Universidade Nacional de Cingapura.

Dopagem química
       Hoje, para controlar o comportamento dos elétrons, os materiais semicondutores necessitam de uma dopagem química, onde pequenas quantidades de outro material são incorporadas para liberar ou para absorver elétrons, criando uma mudança na concentração de elétrons que pode ser usada para dirigir correntes elétricas - é como se "gotas" de elétrons fossem usadas para controlar "rios" de elétrons.
       Ocorre que a dopagem química tem limitações quando não se trata mais de lidar com rios, ou mesmo enxurradas de elétrons, mas apenas com alguns deles, como é necessário nas pesquisas de supercondutores, computação quântica ou mesmo em experimentos de física fundamental.
       Isso porque a dopagem gera mudanças químicas irreversíveis no material que está sendo estudado. Além dos átomos dopantes perturbarem a ordem natural do material original - sua estrutura cristalina -, eles geralmente mascaram importantes estados eletrônicos do material puro.
       Hoje já se sabe, por exemplo, que até mesmo a adição de um único átomo a outro material pode mudar dramaticamente suas propriedades, o que tem sido visto como uma grande oportunidade de abertura de novas fronteiras tecnológicas.


O experimento chamou a atenção da comunidade ao gerar supercondutividade de forma controlada e reversível. [Imagem: L. J. Li et al. - 10.1038/nature16175]


Gerando supercondutividade
       A equipe conseguiu replicar os efeitos da dopagem utilizando apenas campos elétricos e magnéticos externos aplicados a um material monoatômico, o disseleneto de titânio (TiSe2), incorporado em uma amostra de nitreto de boro (hBN).
       O controle do comportamento dos elétrons foi feito com precisão e de forma reversível, permitindo que os físicos executassem medições que até agora eram estritamente teóricas.
       A finura dos dois materiais é crucial para o efeito ao confinar os elétrons dentro de uma camada bidimensional, onde os campos elétricos e magnéticos apresentam um efeito forte e uniforme.
       “Em particular, nós conseguimos levar o material a um estado de supercondutividade, no qual os elétrons se movem através do material sem qualquer perda de calor ou energia,” disse o professor Castro Neto.
       Como são atomicamente finos, os materiais supercondutores bidimensionais podem ter vantagens em relação aos supercondutores tradicionais em aplicações como equipamentos médicos de ressonância magnética (MRI) menores e até portáteis.


Bibliografia:

Controlling many-body states by the electric-field effect in a two-dimensional material. L. J. Li, E. C. T. O Farrell, K. P. Loh, G. Eda, B. Özyilmaz, A. H. Castro Neto. Nature. Vol.: Published online. DOI: 10.1038/nature16175.



sexta-feira, 17 de julho de 2015

Usando campos magnéticos para entender a supercondutividade de alta temperatura (Using magnetic fields to understand high-temperature superconductivity)





Brad Ramshaw, cientista do Los Alamos National Laboratory (LANL) realiza um experimento no Pulsed Field Facility of the National High Magnetic Field Lab, expondo supercondutores de alta temperatura a campos magnéticos muito elevados, mudando a temperatura na qual os materiais se tornam supercondutores e revelando propriedades únicas destas substâncias. Crédito: Los Alamos National Laboratory


Cientistas do Los Alamos National Laboratory estão expondo supercondutores de alta temperatura a campos magnéticos muito elevados, mudando a temperatura que os materiais se tornam supercondutores e revelando propriedades únicas destas substâncias.
       “As medidas de campo magnético em supercondutores de alta temperatura estão pavimentando o caminho para uma nova teoria da supercondutividade”, diz Brad Ramshaw, um cientista do Los Alamos National Laboratory e principal pesquisador do projeto.
       O objetivo final da pesquisa é criar um supercondutor que opere à temperatura ambiente e não necessite de resfriamento. Todos os dispositivos que fazem uso de supercondutores, tais como os imãs MRI encontrados em hospitais, devem ser resfriados a temperaturas muito abaixo de zero, com nitrogênio líquido ou hélio, adicionando custo e complexidade à empresa.
“Esta é uma experiência verdadeiramente histórica que ilumina um problema de importância central para a física da matéria condensada”, disse Gregory Boebinger, cientista-chefe do Condensed Matter Science no National High Magnetic Field Laboratory's. “O sucesso deste trabalho é resultados das equipes terem as melhores amostras, os mais altos campos magnéticos, as técnicas mais sensíveis, e a criatividade inspirada por uma equipe de investigação multi-institucional”.
       Os supercondutores de alta temperatura, tais como o óxido de ítrio, bário e cobre (YBa2Cu3O6+x), não podem ser explicados pela teoria BCS, e assim os pesquisadores necessitam de uma nova teoria para estes materiais. Um aspecto interessante dos supercondutores de alta temperatura, é que se pode alterar a temperatura de transição supercondutora (TC) por doping, ou seja, alterando o número de elétrons que participam da supercondutividade.
       A pesquisa da equipe do Los Alamos descobriu que a dopagem do YBa2Cu3O6+x onde a temperatura crítica é mais alta (dopagem ótima), os elétrons se tornam muito pesados e se movimentam de forma correlacionada.
       “Isso nos diz que os elétrons estão interagindo muito fortemente quando o material é um supercondutor ideal”, disse Ramshaw. “Essa é uma peça vital de informação para construir a próxima teoria da supercondutividade”.
       “Um problema de destaque na supercondutividade de alta TC tem sido a questão de saber se um ponto quântico crítico - um valor especial de dopagem onde flutuações quânticas levam a fortes interações elétron-elétron - está elevando notavelmente a TC nestes materiais”, disse ele. “Prova de sua existência nunca foi encontrada devido à natureza robusta da supercondutividade em cupratos, se os cientistas demonstrarem que existe um ponto quântico crítico, isso constituiria um marco significativo para a resolução do mecanismo de emparelhamento supercondutor, explicou Ramshaw.
       “Montar as peças deste complexo quebra-cabeça da supercondutividade foi uma tarefa difícil que envolveu cientistas de todo o mundo por décadas”, disse Charles H. Mielke, diretor do Pulsed Field Facility of the National High Magnetic Field Lab. “Embora o quebra-cabeça esteja incompleto, esta peça essencial liga resultados experimentais indiscutíveis de aspectos fundamentais da física da matéria condensada”.
       A equipe mediu oscilações quânticas magnéticas em função da dopagem em campos magnéticos muito fortes. Campos magnéticos elevados permitem que o estado normal seja acessado através da supressão da supercondutividade. Os campos que se aproximam de 100 T, em particular, permitem que as oscilações quânticas sejam medidas muito próximas do máximo na temperatura de transição, TC ~ 94 K. Essas oscilações quânticas fornecem aos cientistas uma imagem de como os elétrons estão interagindo uns com os outros antes que eles se tornem supercondutores.
       Investigando uma gama muito ampla de dopagens, os autores mostraram que existe um forte aumento da massa efetiva na dopagem ótima. Um forte incremento da massa efetiva é a assinatura no aumento da força de interação entre os elétrons, e a assinatura de um ponto quântico crítico. A quebra de simetria responsável por este ponto ainda não foi fixada, embora uma conexão com o ordenamento de carga parece ser provável, observa Ramshaw.






Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!