Aplicações da Supercondutividade - O skate voador da Lexus

terça-feira, 20 de outubro de 2015

O que são essas nanoestrelas em supercondutores bidimensionais? (What are these nanostars in 2D-superconductor supposed to mean?)





Físicos da França e da Rússia descobriram perturbações magnéticas que se assemelham a pequenas estrelas oscilantes em supercondutores bidimensionais (2D). Estas excitações eletrônicas tipo estrelas estão localizadas em torno de átomos magnéticos individuais dentro do material supercondutor. Essa observação experimental, feita por meio de espectroscopia de tunelamento a apenas 0,3 graus acima do zero absoluto, é a confirmação direta da famosa teoria Yu-Shiba-Rusinov, que previu esses estados magnéticos quanticamente ligados.

       Os pesquisadores verificaram que nos sistemas bidimensionais, as excitações magnéticas se distribuem por longas distâncias quando comparados com materiais supercondutores tridimensionais comuns. Essa descoberta abre uma rota para a geração de estados quânticos mais complexos a partir de correntes ou grupos de átomos magnéticos em supercondutores, e que são topologicamente protegidos contra decoerência. A construção e manipulação de tais estados é um passo crucial para os computadores quânticos.

Os pesquisadores estudaram o surgimento dos estados ligados de Yu-Shiba-Rusinov (YSR) em torno dos átomos magnéticos individuais inseridos em um supercondutor bidimensional. Os estados YSR foram teoricamente previstos na década de 1960, mas pouca evidência experimental tinha sido obtida até o momento. Os pesquisadores verificaram que em sistemas de duas dimensões, as excitações magnéticas se estendem por uma distância maior em comparação com os supercondutores comuns (tridimensionais), e os emergentes estados quânticos YSR são mais estáveis, o que os tornam mais adequados para uma nova geração de eletrônica quântica.

       Uma estrutura em camadas do supercondutor disseleneto de nióbio (NbSe2) foi utilizada nos testes. Com um microscópio de tunelamento, os pesquisadores foram capazes de observar pela primeira vez o estado YSR ao redor dos átomos individuais de ferro. “Demonstrou-se que o uso de supercondutores bidimensionais no lugar dos tridimensionais resulta em um aumento na extensão espacial dos estados YSR para várias dezenas de nanômetros, isto é, dez vezes mais. E a área de excitação exibe a forma de uma ‘estrela’ seis vezes maior com seus raios se estendendo ao longo do eixo da estrutura do cristal de disseleneto de nióbio. As ‘estrelas’ observadas são mais estáveis ​​e mais adequadas para a criação de novos estados topologicamente protegidos”, diz Vasily Stolyarov, um dos principais pesquisadores responsáveis pela descoberta.

       Os estados Yu-Shiba-Rusinov foram previstos independentemente na década de 1960 por três físicos da China, URSS, Japão. Eles sugeriram que os átomos magnéticos introduzidos em um supercondutor devem criar estados especiais de excitação em torno de si. Os cálculos mostram que áreas de condutividade topológica podem se formar em torno desses estados, onde a corrente flui somente em uma direção. Até recentemente, porém, não tinha sido possível confirmar esta previsão experimentalmente.

       Nos últimos 20 anos, os cientistas vêm tentando criar sistemas quânticos que irão superar computadores baseados em semicondutores tradicionais, nos quais o potencial de desenvolvimento está praticamente esgotado. Certo número de potenciais sistemas candidatos para construir o computador quântico está sendo investigado. O principal problema impedindo o desenvolvimento desses computadores é a alta sensibilidade do mundo nanométrico a influências externas que destroem os estados quânticos. Uma opção promissora é a utilização de estados eletrônicos topologicamente protegidos que são resistentes à decoerência. Ânions não-Abelianos podem ser perfeitos para isso; eles não são íons negativos, mas sim excitações especiais em sistemas quânticos bidimensionais num campo magnético.

       A teoria prevê que tais ânions não-Abelianos podem ocorrer em um ‘líquido’ bidimensional de elétrons em um supercondutor sob a influência de um campo magnético local. O líquido de elétrons torna-se assim degenerado, ou seja, os elétrons podem ter diferentes estados no mesmo nível de energia. A superposição de vários ânions não pode ser afetada sem movê-los; portanto, eles são completamente protegidos contra perturbações.











segunda-feira, 19 de outubro de 2015

A supercondutividade promove a magnetização (Superconductivity trained to promote magnetization)





Na spintrônica, a informação é codificada através do spin do elétron, o qual pode ser direcionado ao longo ou contra determinado eixo. Crédito: Universidade de Hamburgo


Sob certas condições, a supercondutividade, que é incompatível com o magnetismo, pode promover a magnetização. Natalya Pugach, pesquisador russo da Lomonosov Moscow State University, descobriu este efeito ainda não explicado com seus colegas britânicos, cujo grupo foi chefiado pelo Professor Matthias Eschrig. Eles sugerem que técnicas baseadas neste efeito podem acelerar futuros supercomputadores baseados na spintrônica.
A equipe estudou as interações entre a supercondutividade e a magnetização, a fim de compreender como controlar o spin dos elétrons. Na microeletrônica tradicional, a informação é codificada através das cargas elétricas. Na eletrônica de spin ou spintrônica, a informação é codificada através do spin do elétron, que pode ser dirigido ao longo ou contra um determinado eixo.
       “Dispositivos supercondutores de spintrônica exigem muito menos energia e emitem muito menos calor. Isso significa que esta tecnologia irá permitir criar supercomputadores muito mais econômicos e estáveis”, explica Natalya Pugach.
       O principal obstáculo ao desenvolvimento destes dispositivos é que os spins dos elétrons e de outras partículas carregadas são muito difíceis de controlar. Os resultados desta pesquisa indicam que supercondutores podem ser úteis no processo de transporte de spin, e ferromagnéticos podem ser utilizados para controlar as rotações.
       Supercondutores são muito sensíveis a campos magnéticos fortes que podem até destruir a supercondutividade, embora supercondutores expulsem campos magnéticos completamente. É quase impossível fazer supercondutores comuns e materiais magnéticos interagirem entre si, devido às suas direções opostas de ordenamento magnético: em sistemas de armazenamento magnético, o campo magnético organiza os spins em uma direção, mas o par de Cooper em supercondutores têm spins no sentido oposto.
       “Meus colegas experimentaram dispositivos chamados válvulas de spin supercondutoras. Elas se parecem com um ‘sanduíche’ feito de nanocamadas de material ferromagnético, supercondutor e outros metais. Ao mudar a direção da magnetização, é possível controlar a corrente no supercondutor. A espessura das camadas é crucial, porque no caso do supercondutor espesso, é impossível observar qualquer efeito interessante”, explica Natalya Pugach.
       Durante os experimentos, os cientistas bombardearam as amostras com múons (partículas que se assemelham aos elétrons, mas são 200 vezes mais pesados) e analisaram sua dispersão. Este método tornou possível entender como a magnetização prossegue em diferentes camadas da amostra.
       A válvula de spin consistia de duas camadas ferromagnéticas de cobalto, uma camada supercondutora de nióbio com uma espessura de cerca de 150 átomos e uma camada de ouro. No experimento, os pesquisadores descobriram um efeito inesperado: quando as direções de magnetização em duas camadas ferromagnéticas não são paralelas, a interação entre essas camadas e a camada supercondutora induz a magnetização na camada de ouro, saltando sobre o supercondutor. Quando os cientistas mudaram as direções de magnetização nas duas camadas, tornando-as paralelas, este efeito quase desapareceu, a intensidade do campo diminuiu 20 vezes.
       “Este efeito foi inesperado. Nós ficamos muito surpresos ao descobrir isso. Anteriormente, nós tentamos explicar os resultados com um padrão de distribuição de magnetização conhecido, mas em vão. Temos algumas hipóteses, mas nós ainda não temos nenhuma explicação completa. Não obstante, este efeito nos permitiu usar um novo método de manipulações com spins”, diz Natalya Pugach.
       É bem possível que a descoberta levará a conceitualmente a novos elementos em spintrônica. De acordo com Natalya Pugach, tecnologias supercondutoras de spintrônica podem ajudar a construir supercomputadores e servidores poderosos, minimizando o consumo de energia e emissões de calor de supercomputadores atuais.
       “As tecnologias de computador são baseados em semicondutores, que são bons para computadores pessoais. Mas quando você usa esses semicondutores para construir supercomputadores, que produzem calor e ruído, eles exigem sistemas de refrigeração poderosos. A spintrônica poderia resolver todos esses problemas”, Natalya Pugach conclui.







sexta-feira, 9 de outubro de 2015

Teletransporte quântico: cientistas marcam novo recorde nos EUA





 
       Ainda deve demorar um bom tempo até que o teletransporte visto em filmes e séries de ficção científica se torne realidade. Contudo, mesmo que em proporções mínimas, esse tipo de tecnologia já existe, e os progressos, aos poucos, estão crescendo. Um dos avanços nesse campo aconteceu há alguns dias, quando um grupo de cientistas do Instituto Nacional de Padrões e Tecnologia dos Estados Unidos (NIST, na sigla em inglês) quebrou um novo recorde no chamado teletransporte quântico.
       Primeiramente, é preciso esclarecer que esse tipo de teletransporte não está diretamente relacionado ao teletransporte humano, uma vez que a ciência ainda não decifrou como é possível transportar matéria ou energia de um determinado ponto para outro. Na prática, isso significa que ainda não é possível teleportar algo ou alguém com segurança, já que para isso é necessário desmaterializar toda sua composição do ponto A e 'montá-la', detalhe por detalhe, no ponto B.
       O teletransporte quântico, portanto, diz respeito não ao transporte de matéria, mas sim de informação. Envolve a captura das características fundamentais de um dado - e seus "estados quânticos" - para transmiti-lo instantaneamente de uma área para outra, e recriá-lo em outro lugar pré-determinado.
       E foi isso o que essa equipe de físicos conseguiu: reproduzir a condição de uma partícula em outra partícula sem ter estabelecido uma interação prévia entre elas. Na técnica, os cientistas teletransportaram um fóton por um cabo de fibra óptica de 102 quilômetros de comprimento. Essa distância representa um salto quatro vezes maior do que o recorde anterior.
       De acordo com Martin Stevens, pesquisador de óptica quântica do NIST, foi usado um equipamento detector de fótons extremamente sensível, já que 99% dos fótons transmitidos pelo teletransporte se perdem no caminho e nunca completam o percurso. Esse detector avançado de um fóton único tem em sua composição fios supercondutores de siliceto de molibdênio (MoSi2), com cerca de 150 nanômetros de largura e resfriado a cerca de -272 ºC, ou aproximadamente de 1 grau acima do zero absoluto - mais gelado que a superfície de Plutão.
       O que o detector conseguiu foi justamente medir o sinal fraco desse 1% que conseguiu passar pelos 102 km de fibra, tornando a técnica mais eficiente. Para efeito de comparação, esse novo sistema de detecção mostra níveis de performance até 80% melhores que estudos anteriores. Neste caso, o recorde de maior distância percorrida em teletransporte quântico pertencia a uma equipe de físicos de Viena, que usou uma extensão de 144 km entre duas das ilhas Canárias.
       As aplicações do teletransporte quântico são muitas, e beneficiam principalmente o setor de comunicações. Um exemplo é a criação de um supercomputador quântico que pode processar bilhões e bilhões de dados extremamente complexos a velocidades muito acima da média das máquinas atuais mais potentes. Outra possibilidade é levar esse conceito para a internet, garantindo que informações sejam enviadas na rede de uma forma mais segura e com um altíssimo nível de segurança e criptografia.
       Claro que esse é um longo caminho a trilhar, mas a quebra do recorde é um sinal de que os cientistas estão avançando nesse campo de estudo. Segundo Stevens, o próximo passo é desenvolver um detector de fótons ainda mais preciso para aumentar as distâncias percorridas através do teletransporte quântico.






Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!