Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador filmes finos. Mostrar todas as postagens
Mostrando postagens com marcador filmes finos. Mostrar todas as postagens

sexta-feira, 13 de maio de 2016

Filmes finos exibem supercondutividade de alta temperatura (Thin Films Become Superconductive At Higher Temperatures)



 
Este filme fino à base de ferro conduz eletricidade a 35 °C acima do zero absoluto, sem a necessidade de dopagem.


 
Pesquisadores no Japão descobriram uma transição para o estado supercondutor em um filme fino de ferro e selênio a uma temperatura muito acima do zero absoluto, um potencial ganho para o campo da supercondutividade.
       Eles também conseguiram desvendar o mecanismo pelo qual isto ocorre: a acumulação de elétrons em uma densidade extremamente elevada sobre a superfície da película. A alta temperatura no qual a transição ocorre, -238 °C ou 35 °C acima do zero absoluto, amplia a gama de possíveis experiências e das aplicações em supercondutividade.
       Além disso, os pesquisadores mostraram que o filme de seleneto de ferro de aproximadamente dez nanômetros de espessura exibe uma temperatura de transição de 35 K, quatro vezes maior que a temperatura para o mesmo tipo de película com uma espessura de 110 nm.
       “Nós usamos um transistor de camada dupla com uma tensão de 5,5 V aplicados em filmes finos epitaxiais de FeSe para induzir o estado supercondutor”, disse Hidenori Hiramatsu, co-autor da pesquisa.
       “Descobrimos que os elétrons tinham se acumulado a um nível muito elevado no canal FeSe, o que causou a transição de alta temperatura para a supercondutividade. O fato de filmes finos de FeSe mudarem de isolante para supercondutor a 35 K significa que podemos examinar a indução de supercondução sem ter que realizar a dopagem com impurezas, que podem degradar a estrutura do material e os portadores de carga”, afirma o principal autor do estudo, Kota Hanzawa.
       “Nós agora devemos ser capazes de determinar a mais alta temperatura absoluta em que a transição para a supercondutividade pode ocorrer. Isso pode beneficiar pesquisas e aplicações em todo o nosso campo”.





segunda-feira, 28 de dezembro de 2015

Como filmes finos supercondutores suportam fortes campos magnéticos (How Thin Film Superconductors Withstand Strong Magnetic Fields)




Campos magnéticos internos em filmes finos de MoS2 ajuda-os a suportar campos magnéticos externos de até 37 Tesla, dizem os cientistas.



Cientistas descobriram como a supercondutividade em filmes finos de dissulfeto de molibdênio (MoS2) pode, ao contrário de outros supercondutores, suportar campos magnéticos muito fortes. A descoberta poderia ser útil na fabricação de computadores quânticos.
          A supercondutividade é um fenômeno quântico no qual os elétrons formam pares e fluem com resistência zero. No entanto, fortes campos magnéticos quebram os pares de elétrons e destroem a supercondutividade.
         Pesquisadores liderados pelo professor Ye Jianting da Universidade de Groningen, descobriram que a supercondutividade em filmes finos de MoS2 pode resistir a um campo magnético de 37 Tesla. Era necessária uma explicação para o fenômeno e o professor K. T. Law da Universidade de Hong Kong resolveu o enigma.
         Law e seu aluno propuseram que a estrutura da rede dos filmes finos de MoS2 permite que os elétrons movam-se no material experimentando fortes campos magnéticos internos de cerca de 100 Tesla. Este tipo especial de campo magnético interno, em vez de prejudicar a supercondutividade, protege os pares de elétrons supercondutores dos campos magnéticos externos.
        A equipe de pesquisa chama este tipo de material de supercondutor ‘Ising’. Eles também previram que muitos outros supercondutores com estrutura de rede semelhante ao MoS2 pertenceriam a mesma família de supercondutor Ising.
         Além da capacidade de suportar um campo magnético forte, a equipe do professor Law salienta que pode ser utilizado para criar um novo tipo de partícula chamada férmions de Majorana. Estes férmions podem ser úteis na fabricação de computadores quânticos.
       “Muitas propriedades e aplicações de supercondutores Ising ainda devem ser descobertas”, disse Law. “Agora que entendemos o mecanismo de como certos materiais se tornam resistentes à interferência de campos magnéticos externos, podemos procurar materiais com características semelhantes às do MoS2. Estou certo de que iremos descobrir mais supercondutores Ising em breve”, acrescentou.






quinta-feira, 24 de dezembro de 2015

Físicos desvendam o comportamento dos supercondutores fortemente desordenados (Physicists unravel behavior of strongly disordered superconductors)



A diferença entre os supercondutores convencionais e supercondutores que exibem pseudogap. Em supercondutores convencionais, quando a temperatura está acima do valor crítico, a supercondutividade desaparece devido à quebra dos pares de Cooper, mas em supercondutores que exibem pseudogap isso acontece porque o arranjo desordenado começa a dificultar o deslocamento dos pares de Cooper, e tornam-se localizados em uma região particular da rede. Imagem: cortesia de MIPT Press Service.



    Os físicos Mikhail Feigel'man e Lev Ioffe explicaram o efeito incomum em um número de materiais supercondutores. Usando uma teoria que desenvolveram anteriormente, os cientistas conectaram a densidade de portadores supercondutor com as propriedades quânticas de uma substância.
       No artigo publicado pelos cientistas, eles discutem os chamados supercondutores de pseudogap. O termo gap aparece na teoria quântica da supercondutividade e é uma definição para a abertura característica em um diagrama de distribuição de energia do elétron, o espectro de energia. É feita uma distinção entre os supercondutores com um gap ‘convencional’ e supercondutores especiais, que mesmo em seu estado normal, demonstram algo semelhante a um gap - ele é chamado de pseudogap.



Pares de elétrons e supercondutividade

    A fim de entender o que é um gap, nós precisamos examinar brevemente a teoria por trás do termo. Atualmente, não existe um modelo completo que é capaz de explicar o fenômeno da supercondutividade em detalhes (e que nos permita, por exemplo, sintetizar um supercondutor capaz de funcionar à temperatura ambiente).
       No entanto, um modelo de sucesso que é o mais frequentemente usado é a teoria BCS, que foi desenvolvida por John Bardeen, Leon Cooper e John Robert Schrieffer. Na teoria BCS, um papel-chave é desempenhado por dois pares de Cooper - elétrons ligados juntamente com spins opostos.
       Estes pares são caracterizados por uma ligação muito fraca entre as partículas, e por outro lado, eles não interagem com a estrutura do cristal e, portanto, movem-se livremente dentro de uma substância e não perdem energia em colisões.
       Se um metal é aquecido até uma temperatura em que o movimento térmico das partículas não impeça a formação de pares de Cooper, estes pares podem mover-se sem perda de energia e, assim, fazem com que todo o espécime alcance o estado supercondutor.
A formação de pares de Cooper altera não apenas as propriedades elétricas de uma substância, mas também a distribuição da energia dos elétrons, o espectro de energia. O acoplamento dos pares resulta num gap característico, ou pseudogap dependendo das circunstâncias. Se a substância for supercondutora, após o resfriamento até à temperatura crítica, a supercondutividade é alcançada e ao mesmo tempo ocorre a formação dos pares de Cooper, que é chamado de gap. No entanto, se isto ocorre no diagrama do espectro de elétrons, após o resfriamento, mas a supercondutividade ainda não tiver sido atingida, o termo pseudogap é usado (o que significa que não é uma diferença ‘verdadeira’, e a sua formação não está ligada ao aparecimento de supercondutividade).
       Se esta substância é resfriada ainda mais, ela passa ao estado supercondutor e o gap no espectro aumenta, seu valor inclui tanto o pseudogap como o próprio gap supercondutor. As propriedades destes supercondutores são consideravelmente diferentes daquelas exibidas pelos supercondutores convencionais.



Pseudogap em um espectro de energia real. Imagem: Benjamin Sacepe (Neel Institute, Grenoble, França)



Supercondutores com um gap normal são bem descritos pela teoria BCS, que conecta explicitamente os pares de Cooper com a formação do gap no diagrama de distribuição de energia. De acordo com esta teoria, a densidade de corrente supercondutora é diretamente proporcional à magnitude do gap supercondutor. Mais pares de Cooper são formados por unidade de volume quanto maior a diferença no espectro de energia, ou seja, o tamanho do gap.
       Supercondutores com um pseudogap não se encaixam na teoria BCS, mas eles podem ser descritos utilizando a teoria proposta anteriormente por Mikhail Feigel'man, Lev Ioffe e seus colegas. Neste novo trabalho, os cientistas usaram sua teoria para calcular a dependência da densidade de corrente em supercondutores com a largura do pseudogap.



A chave está em desordem

    O estudo, a nível microscópico, da estrutura dos supercondutores que exibem pseudogap mostrou que estes materiais são fortemente desordenados. Isto significa que os seus átomos não estão dispostos em uma estrutura cristalina, ou a estrutura desta rede é fortemente prejudicada. Exemplos de supercondutores que exibem pseudogap são filmes finos de nitreto de titânio (em que a estrutura do cristal é comprometida em muitos lugares) e óxido de índio (que pode ser completamente amorfo, como o vidro).
       A desordem desempenha um papel fundamental porque a transição para um estado supercondutor não ocorre ao mesmo tempo da formação dos pares de Cooper. Os elétrons que estão ligados uns aos outros nestes materiais aparecem depois que a resistência elétrica desaparece, porque inúmeras variações na estrutura microscópica da substância a partir da ordem ideal pode impedir um par de Cooper, o qual em cristais ordenados move-se livremente, sem interferências.
       Deve-se ressaltar que os pares de Cooper em um supercondutor que exibe pseudogap não podem ser descritos como imóveis. Como resultado de efeitos quânticos, o seu comportamento é um pouco mais complexo: obedecendo o princípio da incerteza, eles não congelam imóveis em um lugar, mas “espalham-se” sobre uma grande distância (dezenas de distâncias interatômicas), em uma região finita. Se eles pudessem se mover, esta região iria cobrir toda a substância.
       Deduzir parâmetros elétricos de supercondutores com pseudogap a partir de propriedades quânticas é importante tanto do ponto de vista fundamental (os cientistas estão começando a ter uma melhor compreensão geral dos supercondutores), como prático. Os investigadores observam que usando o óxido de índio, um supercondutor com pseudogap típico, é possível criar um dispositivo quântico supercondutor que pode ser utilizado como um protótipo para um computador quântico.
       Tendo em consideração o movimento de pares de Cooper em uma substância com variados graus de desordem, os cientistas deduziram a dependência da densidade teórica de pares de Cooper na substância com a largura do pseudogap. Esta é uma característica importante, como é inversamente proporcional à indutância do filme (os materiais descritos são obtidos na forma de filme) no estado supercondutor. Filmes como estes com alta indutância e resistência zero são necessários para produzir qubits, as unidades fundamentais de dispositivos de computação quântica.
       Em supercondutores convencionais, a dependência da densidade de pares de Cooper com a largura do pseudogap é linear, contudo, nas substâncias testadas a dependência é quadrática. Este fato é fácil de verificar experimentalmente em um estudo mais detalhado, e, se isso acontecer, a teoria desenvolvida anteriormente pelos autores receberá uma confirmação adicional.








sexta-feira, 24 de julho de 2015

Próxima geração de aceleradores de partículas com filmes finos de nióbio (A grad student works toward the next generation of particle accelerator)




Matthew Burton (à direita) e sua orientadora Ale Lukaszew estão trabalhando em melhorias de um importante componente de aceleradores de partículas.


É preciso um grande instrumento para investigar uma partícula pequena. Os aceleradores de partículas, usados ​​pelos físicos para estudar as partículas elementares, são geralmente construídos no subsolo e seu tamanho é muitas vezes medido em milhas. Como o conhecimento das partículas fundamentais avança através de novas descobertas, os cientistas precisam de melhores aceleradores de partículas. Matthew Burton trabalha para fazer um acelerador melhor.
       Burton está se concentrando em um componente acelerador chamado cavidade ressonante de rádio-frequência (RF). As cavidades de RF são supercondutores em forma de anel que aceleram as partículas de modo que possam colidir umas com as outras em um esforço para dividi-las em seus componentes menores. As RF supercondutoras (SRF) usadas atualmente são feitas de nióbio, um metal que deve ser resfriado a -257 °C para se comportar como um supercondutor. O acelerador no JLab usa 338 cavidades de nióbio.


Um técnico do Jefferson Lab examina uma cavidade RF. O acelerador de partículas do JLab contém mais de 300 desses componentes supercondutores.


       Burton explicou que as cavidades feitas de nióbio apresentam alguns problemas. Por um lado, o nióbio é um metal altamente caro e também tem inconvenientes técnicos relacionados com a sua capacidade de conduzir o calor. Além disso, as cavidades SRF de nióbio têm progredido a um ponto em que exige-se um novo tipo de cavidade que ofereça um desempenho além do que o nióbio pode proporcionar.
       Para encarar estes problemas, Burton tem duas abordagens: uma é testar a possibilidade de utilizar filmes finos à base de nióbio para o revestimento das cavidades de cobre, que é mais barato e um condutor de calor mais eficiente. Outra é usar os filmes finos em multicamadas para criar uma cavidade ainda melhor com outros materiais adequados.
       Segundo Ale Lukaszew, “se o CERN tivesse as cavidades com a qualidade que temos hoje, o famoso bóson de Higgs teria sido descoberto há 25 anos. As cavidades que o CERN estava usando para realizar os experimentos na época chegou a um nível de energia muito abaixo do que era necessário para provar a existência do bóson de Higgs”, explicou.
       O processo de alinhar as cavidades com filmes finos oferece vários desafios. Lukaszew explicou que o filme deve ter espessura uniforme em toda a cavidade e também deve ter as qualidades de superfície adequadas. A menor imperfeição pode interromper seu caráter supercondutor.
       Burton explicou que a técnica de forrar as cavidades com filmes finos foi testada, mas principalmente com amostras de tamanho maiores. Amostras assim fornecem uma ideia de como a cavidade se comportaria se todo o interior for revestido com uma película fina. Burton estará entre os primeiros a tentar cavidades totalmente revestidas com um filme fino de nióbio. Ele está trabalhando com um processo chamado High Impulse Magnetron Sputtering (HIPIMS) para produzir filmes mais densos e uniformes por toda a cavidade. “Isso nunca foi usado antes. Nosso objetivo é utilizar esta nova técnica para tentar obter um melhor controle sobre a densidade dos filmes”, disse Burton.
       Os cientistas que tentam produzir uma cavidade com filmes finos de nióbio estão correndo contra o relógio. Lukaszew explicou que o CERN já começou a atualizar seus aceleradores de partículas: “Eles precisam de uma resposta no prazo de quatro anos, se o que estamos fazendo é melhor do que as cavidades atuais, então elas vão ser implementadas no CERN.
       A segunda fase do trabalho baseia-se em uma ideia de um físico teórico, Alexander Gurevich, que propôs um modelo usando filmes finos em multicamadas para aumentar o campo de aceleração das cavidades. Gurevich propôs que a superfície interior das cavidades devem ser revestidas com filmes finos alternando camadas supercondutoras e isolantes para aumentar o campo de aceleração das cavidades. “Se você faz cada camada fina o suficiente ela vai ter um campo crítico maior”, disse Burton. Quanto mais energia for inserida no interior das cavidades, mais rápido as partículas irão acelerar. As camadas alternadas permitem que as cavidades suportem campos de aceleração mais elevados.
       “A teoria prevê que você pode chegar ao dobro do campo máximo de aceleração fora destas cavidades. Assim, você pode fazer um acelerador com a metade do seu tamanho atual”. Aceleradores de partículas menores podem ser instalados em portos e em locais estratégicos semelhantes para verificar a presença de material nuclear. “Se você tiver uma cavidade reforçada que permita obter duas vezes o campo de aceleração, você pode fazer um acelerador que se encaixa em um porto de embarque. Você pode até mesmo encaixar na parte traseira de um caminhão pequeno”, disse ele. Este será o primeiro teste do modelo Gurevich em cavidades reais.



quarta-feira, 17 de junho de 2015

Uma rota para desenvolver nanodispositivos supercondutores (A route to developing superconducting nano-devices)



Ferro (Fe) círculos verdes, selênio (Se) círculos azuis. A temperatura de transição supercondutora é sintonizada através da introdução de elétrons por deposição de átomos de potássio K (círculos laranja) na superfície. Círculos amarelos representam um par de elétrons supercondutores (par de Cooper). (Imagem: Takashi Takahashi)


    
Um grupo de pesquisa da Universidade de Tohoku conseguiu fabricar um filme supercondutor atomicamente fino de alta temperatura crítica (TC = 60 K ou -213 °C). A equipe, liderada pelo professor Takashi Takahashi, também estabeleceu o método para controlar/sintonizar a TC.
Esta descoberta não só fornece uma plataforma ideal para investigar o mecanismo da supercondutividade no sistema bidimensional, mas também abre o caminho para o desenvolvimento de dispositivos supercondutores em nanoescala da próxima geração. Os resultados da pesquisa foram publicados na revista Nature Materials (clique aqui).
Supercondutores são considerados como um dos candidatos mais promissores para os dispositivos eletrônicos avançados da próxima geração. Porém, a aplicação de supercondutores em dispositivos tem sido muito difícil. O maior obstáculo é a necessidade de um sistema de refrigeração grande e dispendioso com hélio líquido, devido à baixa TC dos supercondutores convencionais, que é próxima do zero absoluto (0 K ou -273 °C). Também tem sido um grande desafio realizar a integração de alta densidade de supercondutores em dispositivos eletrônicos. A fim de ultrapassar estes problemas, é definitivamente necessário desenvolver um novo supercondutor com TC superior que possa ser fabricado numa película fina.
A equipe de pesquisa da Universidade de Tohoku voltou sua atenção para o seleneto de ferro (FeSe), que é um membro dos supercondutores à base de ferro. Enquanto a TC do FeSe é de apenas 8 K (-265 °C), a assinatura de uma maior TC tem sido sugerida em filmes ultrafinos e sua verificação foi urgentemente necessária.
Inicialmente, os pesquisadores fabricaram filmes atomicamente finos de FeSe de alta qualidade. Os filmes possuem espessura entre uma monocamada (que corresponde a 3 átomos de espessura) e vinte monocamadas (60 átomos de espessura), e foram fabricados usando a técnica Molecular Beam Epitaxy (MBE – feixe molecular epitaxial). Em seguida, eles investigaram cuidadosamente a estrutura eletrônica dos filmes finos usando o método Angle-Resolved Photoemission Spectroscopy (ARPES - espectroscopia de fotoemissão com resolução angular).




Elétrons são emitidos a partir da superfície pela incidência de luz ultravioleta. A estrutura eletrônica do cristal é determinada através da medição da energia e o ângulo de emissão dos elétrons. (Imagem: Takashi Takahashi)




Nas medidas da ARPES, os investigadores observaram a abertura de um gap supercondutor a baixa temperatura, que é uma prova direta da emergência da supercondutividade nos filmes. Os investigadores encontraram que a TC estimada a partir do gap em um filme de monocamada é surpreendentemente elevada (acima de 60 K), que é cerca de 8 vezes maior do que a TC de amostras volumétricas do FeSe.
Enquanto filmes multicamadas não mostram supercondutividade, os pesquisadores descobriram um novo método para depositar átomos alcalinos sobre os filmes e controlar a densidade de elétrons no filme. Ao empregar este método, os pesquisadores conseguiram converter os filmes multicamadas de não-supercondutores em supercondutores de alta TC ~ 50 K.
O resultado dá um grande impacto para ambas as pesquisas básicas e aplicadas em supercondutores. Pode conduzir à intensas pesquisas visando aumentar ainda mais a TC, alterando o número de camadas atômicas, a quantidade de elétrons dopados e as espécies do substrato. Abre uma via para o desenvolvimento de um nanodispositivo supercondutor que consiste em partes de tamanho atômico. O supercondutor ultrafino de alta-TC pode contribuir eficazmente para o redimensionamento significativo e consequente integração de alta densidade em circuitos elétricos, levando à realização de dispositivos eletrônicos de futura geração com alta economia de energia e operação de ultra-alta velocidade.







segunda-feira, 29 de dezembro de 2014

Supercondutores ultrafinos dão um passo (Ultrathin Superconductors Take a Step Up)




http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.247004


Filmes de metal de apenas um átomo de espessura ou dois podem se tornar supercondutores em temperaturas próximas do zero absoluto. No entanto, nestes materiais bidimensionais, pequenas imperfeições, como alterações na elevação de um átomo pode bloquear o fluxo das supercorrentes. Um novo estudo de vórtices em filmes de metal supercondutores fornece a primeira evidência direta de que defeitos atômicos se comportam como junções Josephson - estruturas feitas de dois supercondutores separados por uma barreira isolante. Os resultados implicam que os defeitos atômicos permitem o fluxo de supercorrentes a uma velocidade limitada, o que pode torná-los úteis como elementos funcionais em futuros dispositivos supercondutores 2D.
       Em 2010, físicos descobriram que filmes metálicos adsorvidos na superfície de silício poderiam se comportar como supercondutores. A descoberta veio como uma surpresa, uma vez que se esperava que as flutuações quânticas interrompessem a supercondutividade em estruturas 2D. Uma grande quantidade de pesquisa agora é dedicada a testar quão grande é a robustez desta supercondutividade. Imperfeições atômicas e outros defeitos de superfície normalmente têm pouco efeito sobre supercondutores volumétricos (3D), mas claramente influenciam o comportamento de materiais ultrafinos.
       Takashi Uchihashi e seus colegas realizaram medidas usando a microscopia de tunelamento por varredura em filmes de índio depositados em superfícies de silício. Especificamente, a equipe estudou a formação de vórtices viajando em torno de um circuito fechado que aparece em certos supercondutores quando um campo magnético externo é aplicado. Os pesquisadores observaram que a maioria dos vórtices era circular com um núcleo interior não supercondutor. No entanto, os vórtices localizados ao longo dos defeitos atômicos estavam em forma elíptica, e seus núcleos eram supercondutores. As simulações numéricas mostraram que esse comportamento era consistente com as imperfeições atômicas fornecendo um acoplamento Josephson entre diferentes patamares do filme.






Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!