Aplicações da Supercondutividade - O skate voador da Lexus

domingo, 31 de janeiro de 2016

International Conference on Superconductivity and Magnetism - ICSM 2016







5th International Conference on Superconductivity and Magnetism- ICSM2016.

Local: Fethiye/Blue Lagoon (Ölüdeniz).

Data: 24th – 30th April, 2016.

Site: http://icsm2016.org/




quarta-feira, 20 de janeiro de 2016

Determinando a temperatura crítica de um supercondutor de alta temperatura (Determining the Superconducting Transition Temperature of High Temperature Superconductor Tape)


Os detalhes de um experimento para medir a temperatura crítica (TC) de supercondutores são fornecidos neste artigo. Para o experimento, o sistema criogênico OptistatDry da Oxford Instruments foi equipado com uma opção de amostra desmontável e integrado com um amplificador de frequência média da Zurique Instruments. O experimento demonstrou que a plataforma criogênica exibe adaptabilidade, controlabilidade e capacidade para resolver pequenos sinais enquanto evita o ruído de fundo.
O arranjo experimental é mostrado na figura 1 a seguir.



Figura 1. Setup do amplificador MFLI e do criostato OptistatDry.


Um suporte de cobre foi usado para montar a fita de 500 milímetros de YBCO (Figura 2).



Figura 2. Bobina de YBCO montada sobre o disco de amostra


Derivações de tensão foram aplicadas sobre a fita. Terminais de alimentação foram adicionados na extremidade da fita para passar a corrente de excitação. Um sensor e um aquecedor foram montados no disco da amostra.
     O controle MercuryiTC do sistema permite varreduras simultâneas do trocador de calor e temperaturas da amostra em taxas específicas que são escolhidas pelo usuário. A varredura da temperatura foi realizada em 0.1, 0.05 e 0.01 K/min sobre a região de transição, a fim de obter a temperatura de transição supercondutora do YBCO. O MFLI desempenhou um papel duplo neste experimento. Foi um gerador de função de baixa distorção e um amplificador que recuperou pequenas respostas demoduladas. O sinal de entrada foi monitorado em tempo real com a ajuda do MFLI.
Embora o sistema OptistatDry seja personalizado para lidar com pequenas amostras, o dispositivo pode ser estendido para trabalhar com amostras maiores. Como a Figura 3 mostra, a transição supercondutora (Tc) ocorre ao longo de um intervalo de temperatura devido ao gradiente de temperatura que existe entre a bobina de YBCO relativamente grande (diâmetro de 40 milímetros). A estrutura granular do YBCO é exposta pelas varreduras rápidas de temperatura. Quando a temperatura de loop do YBCO aumenta, os domínios parecem mudar seu estado em grupos de avalanche.



Figura 3. Propagação do estado supercondutor através do YBCO quando a amostra é aquecida a diferentes taxas de aquecimento. A menor tensão de excitação aplicad foi pela 100 mK/min.


Para obter mais controle e resolução da transição, uma varredura gradual da temperatura é necessária, que pode ser feita com exatidão e precisão pelo controlador MercuryiTC.
     Determinar a Tc de um material usando o método de medição de 4 fios não é ideal, mas o experimento teve como objetivo ilustrar as características de adaptabilidade e de medição do OptistatDry integrado ao sistema MFLI. Uma vez que teria sido um desafio resolver os pequenos sinais com uma técnica resistividade DC, uma técnica CA com um amplificador MFLI foi usada em vez disso. Esta técnica foi capaz de chegar a uma base de ruído de aproximadamente 12μV. Uma frequência de medida ideal de 117 Hz foi escolhida de forma a minimizar componentes harmônicas mais altas e evitar qualquer grande mudança de fase entre os sinais de excitação e de medição. A distorção harmônica e a entrada MFLI pode ser medida simultaneamente usando um multi-demodulador. Este arranjo permitiu o uso do mesmo método de medição para determinar se a corrente de excitação através da amostra de YBCO foi 104  mA a uma temperatura de 91 K. A resistividade estado normal da fita de comprimento foi 3x10-8 Ωm.
     O experimento demonstrou a transição supercondutora do YBCO em diferentes taxas de aquecimento. Medições diferenciais de várias propriedades físicas podem ser realizadas num amplo intervalo de temperaturas e a modulação de condução com base na configuração criogênica e instrumentação. Em adição, multi-desmodulador e informação de fase em frequências harmônicas superiores ou múltiplas pode ser obtida simultaneamente, sem alterar qualquer hardware. Isso permite maior flexibilidade em projetar experimentos de baixa temperatura.




segunda-feira, 18 de janeiro de 2016

Detectando um único fóton com maior precisão pelo uso de materiais supercondutores (Superconductor Ups Single-Photon Detection Accuracy)






Micrografia de um detector de fóton feito de nanofios supercondutores de siliceto de molibdênio (MoSi). A imagem tem cerca de 35 micrômetros de largura. Cortesia de Verma/NIST.



O aprimoramento da tecnologia de detector de um único fóton feito de nanofios supercondutores oferece reduzido ‘jitter’ temporal com sistemas de refrigeração menos exigentes. Esta maior precisão a uma temperatura mais elevada faz com que o novo detector seja útil para comunicações de pesquisa e experimentos envolvendo emaranhamento quântico e teletransporte.
Pesquisadores do NIST usaram um feixe de elétrons para modelar nanofios em uma película fina feita de siliceto de molibdênio (MoSi),  um supercondutor cerâmico tolerante ao calor. Pesquisadores da Universidade de Genebra, na Suíça e do Jet Propulsion Laboratory, também contribuíram com o trabalho.
O pequeno impulso de energia que ocorre quando um único fóton atinge o dispositivo é suficiente para fazer os nanofios perderem brevemente a sua capacidade supercondutora e tornam-se condutores normais, sinalizando o evento. Detectores de nanofios são super rápido, contando dezenas de milhões de fótons por segundo, e gerando poucas contagens falsas.
Jitter é definido como incerteza no tempo de chegada de um fóton. A criação de um sistema com menos jitter significa que os fótons podem ser espaçados mais estreitamente juntos, mas ainda serem corretamente detectados. Isso poderia permitir a comunicação com taxas de bits mais elevadas, com mais informações transmitidas no mesmo período.
Usando mais corrente elétrica do que um projeto de 2011 baseado em liga de tungstênio-silício, o novo detector reduz os jitters pela metade, de cerca de 150 ps para 76 ps. A absorção de luz e a eficiência foram reforçadas pela incorporação do detector em uma cavidade feita de espelhos de ouro e camadas de outros materiais não reativos. A eficiência de 87% foi demonstrada em 1542 nm, um comprimento de onda usado em telecomunicações. Os dispositivos de tungstênio-silício exibem 93% eficiência. Além disso, o novo detector pode funcionar a 2.3 K, enquanto que o detector de tungstênio-silício exige resfriamento de < 1 K.
“A temperatura de funcionamento mais elevada do MoSi, torna esses dispositivos promissores para uso generalizado devido aos recursos de criogenia menos dispendiosos para a sua operação”, escreveu o pesquisador em Optics Express (doi: 10,1364/OE.23.033792 ).







terça-feira, 12 de janeiro de 2016

Controle de elétrons produz supercondutividade



Redação do Site Inovação Tecnológica -  08/01/2016


Os elétrons foram controlados dentro do material monocamada por campos elétricos e magnéticos aplicados externamente. [Imagem: L. J. Li et al. - 10.1038/nature16175]


Físicos desenvolveram uma forma de usar campos elétricos e magnéticos externos para controlar elétrons de forma seletiva no interior de materiais com espessura atômica.
       Embora toda a tecnologia moderna, dos motores e lâmpadas aos computadores, funcione com base na eletricidade, aproveitando o fluxo de elétrons, manipular elétrons individualmente é outra história - com tantas outras possibilidades de aplicações.
       “Os elétrons não são só pequenos e rápidos, eles naturalmente se repelem devido à sua carga elétrica. Eles obedecem às estranhas leis da física quântica, tornando-se difícil controlar seu movimento diretamente,” explica o físico brasileiro Antônio Hélio de Castro Neto, atualmente na Universidade Nacional de Cingapura.

Dopagem química
       Hoje, para controlar o comportamento dos elétrons, os materiais semicondutores necessitam de uma dopagem química, onde pequenas quantidades de outro material são incorporadas para liberar ou para absorver elétrons, criando uma mudança na concentração de elétrons que pode ser usada para dirigir correntes elétricas - é como se "gotas" de elétrons fossem usadas para controlar "rios" de elétrons.
       Ocorre que a dopagem química tem limitações quando não se trata mais de lidar com rios, ou mesmo enxurradas de elétrons, mas apenas com alguns deles, como é necessário nas pesquisas de supercondutores, computação quântica ou mesmo em experimentos de física fundamental.
       Isso porque a dopagem gera mudanças químicas irreversíveis no material que está sendo estudado. Além dos átomos dopantes perturbarem a ordem natural do material original - sua estrutura cristalina -, eles geralmente mascaram importantes estados eletrônicos do material puro.
       Hoje já se sabe, por exemplo, que até mesmo a adição de um único átomo a outro material pode mudar dramaticamente suas propriedades, o que tem sido visto como uma grande oportunidade de abertura de novas fronteiras tecnológicas.


O experimento chamou a atenção da comunidade ao gerar supercondutividade de forma controlada e reversível. [Imagem: L. J. Li et al. - 10.1038/nature16175]


Gerando supercondutividade
       A equipe conseguiu replicar os efeitos da dopagem utilizando apenas campos elétricos e magnéticos externos aplicados a um material monoatômico, o disseleneto de titânio (TiSe2), incorporado em uma amostra de nitreto de boro (hBN).
       O controle do comportamento dos elétrons foi feito com precisão e de forma reversível, permitindo que os físicos executassem medições que até agora eram estritamente teóricas.
       A finura dos dois materiais é crucial para o efeito ao confinar os elétrons dentro de uma camada bidimensional, onde os campos elétricos e magnéticos apresentam um efeito forte e uniforme.
       “Em particular, nós conseguimos levar o material a um estado de supercondutividade, no qual os elétrons se movem através do material sem qualquer perda de calor ou energia,” disse o professor Castro Neto.
       Como são atomicamente finos, os materiais supercondutores bidimensionais podem ter vantagens em relação aos supercondutores tradicionais em aplicações como equipamentos médicos de ressonância magnética (MRI) menores e até portáteis.


Bibliografia:

Controlling many-body states by the electric-field effect in a two-dimensional material. L. J. Li, E. C. T. O Farrell, K. P. Loh, G. Eda, B. Özyilmaz, A. H. Castro Neto. Nature. Vol.: Published online. DOI: 10.1038/nature16175.



Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!