Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador SQUID. Mostrar todas as postagens
Mostrando postagens com marcador SQUID. Mostrar todas as postagens

quinta-feira, 20 de julho de 2017

Primeira observação direta do movimento de vórtices em supercondutores (First direct observation and measurement of ultra-fast moving vortices in superconductors)




Esta foto mostra quatro imagens diferentes de vórtices que penetram a taxas de dezenas de GHz em um filme supercondutor de chumbo e que viajam a velocidades de até 20 km/s. As trajetórias do vórtice, que aparecem como linhas manchadas, mostram uma estrutura em forma de árvore com um único caule que sofre uma série de bifurcações em ramos. Cada imagem é feita em um campo magnético diferente e cada imagem é 12x12 μm2. Crédito: Yonathan Anahory/Universidade Hebraica.



Pesquisadores fizeram a primeira observação visual direta e a medição da dinâmica de vórtices ultra-rápidos em supercondutores. Sua técnica, detalhada na revista Nature Communications, poderia contribuir para o desenvolvimento de novas aplicações práticas ao otimizar as propriedades supercondutoras para uso em eletrônica.
A supercondutividade, em geral, pode ser suprimida na presença de campos magnéticos, limitando a capacidade de uso desses materiais em aplicações da vida real. Uma certa família de supercondutores, chamada de tipo 2, pode suportar valores muito maiores de campos magnéticos. Isto é graças à sua capacidade de permitir que o campo magnético ‘atravesse’ o material de forma quantizada, em uma forma tubular local chamada de vórtice. Infelizmente, na presença de correntes elétricas, esses vórtices experimentam uma força e podem começar a se mover. O movimento dos vórtices provoca resistência elétrica, o que, novamente, representa um obstáculo para as aplicações.
Compreender quando e como os vórtices se moverão ou permanecerão localizados é o foco de muita pesquisa científica. Até agora, abordar a física dos vórtices em movimento rápido demonstrou ser extremamente desafiador, principalmente devido à falta de ferramentas adequadas.


Este filme mostra a dinâmica de vórtice conduzida por diferentes correntes. Em baixas correntes, os vórtices são estacionários e aparecem como pontos brilhantes. Em correntes maiores, os vórtices se movem a 20 km/s e aparecem nesta técnica como uma linha manchada. Crédito: Yonathan Anahory/Universidade Hebraica.


Agora, uma equipe internacional de pesquisadores liderada pelo Prof. Eli Zeldov do Weizmann Institute of Science e o Dr. Yonathan Anahory, mostrou pela primeira vez como esses vórtices se movem em supercondutores e quão rápido eles podem viajar. Eles usaram uma nova técnica de microscopia chamada SQUID-on-tip, que permite a imagem magnética em alta resolução sem precedentes (cerca de 50 nm). A técnica foi desenvolvida na última década no Instituto Weizmann.
Usando este microscópio, eles observaram vórtices que fluem através de um filme supercondutor fino a taxas de dezenas de GHz e viajam a velocidades muito mais rápidas do que se pensava possível, até cerca de 72000 km/h (45000 mph). Isso não é apenas muito mais rápido do que a velocidade do som, mas também excede o limite de velocidade de quebra do condensado supercondutor, o que significa que um vórtice pode viajar 50 vezes mais rápido do que o limite de velocidade da supercorrente que o conduz. Isso seria como dirigir um objeto para viajar ao redor da Terra em pouco mais de 30 minutos.
Nas fotos e vídeos mostrados pela primeira vez, as trajetórias do vórtice aparecem como linhas manchadas cruzando de um lado a outro do filme. Isso é semelhante ao desfocar de imagens em fotografias de objetos em movimento rápido. Eles mostram uma estrutura em forma de árvore com um único caule que sofre uma série de bifurcações em ramos. Este fluxo de canal é bastante surpreendente, uma vez que os vórtices normalmente se repelem e tentam espalhar o máximo possível. Aqui os vórtices tendem a se seguir, o que gera a estrutura semelhante a uma árvore.




De frente para trás: Professor Eli Zeldov do Weizmann Institute of Science, Dr. Yonathan Anahory da Universidade Hebraica de Jerusalém e Dr. Lior Embon. Crédito: Weizmann Institute of Science.





          Uma equipe de físicos teóricos dos EUA e da Bélgica, liderada pelos professores Alexander Gurevich e Milorad Miloševic, explicou parcialmente essa descoberta pelo fato de que, quando um vórtice se move, a resistência aquece localmente o material, o que torna mais fácil os demais vórtices seguirem a mesma rota. “Este trabalho oferece uma visão da física fundamental da dinâmica de vórtices em supercondutores, crucial para muitas aplicações”, disse o Dr. Lior Embon, que era, na época, o estudante responsável por este estudo. “Essas descobertas podem ser essenciais para o desenvolvimento da eletrônica supercondutora, abrindo novos desafios para teorias e experiências na ainda inexplorada gama de campos e correntes eletromagnéticas muito altas".
“A pesquisa mostra que a técnica SQUID-on-tip pode abordar alguns problemas pendentes da supercondutividade sem equilíbrio, vórtices ultra-rápidos e muitos outros fenômenos magnéticos à escala nanométrica”, disse o Dr. Yonathan Anahory.
Além disso, os resultados das simulações sugerem que, através do desenho adequado da amostra e da remoção de calor melhorada, deve ser possível alcançar velocidades ainda maiores. Nesse regime, as frequências calculadas de penetração de vórtices podem ser ‘empurradas’ para o intervalo de freqüência de THz muito tecnicamente desejado.
A pesquisa descobre a rica física de vórtices ultra-rápidos em filmes supercondutores e oferece uma perspectiva ampla para novas investigações experimentais e teóricas. No futuro, essa tecnologia poderia permitir aos pesquisadores testar projetos que visam reduzir o movimento dos vórtices e melhorar as propriedades dos supercondutores.





Fonte2: L. Embon et al, Imaging of super-fast dynamics and flow instabilities of superconducting vortices, Nature Communications (2017). DOI: 10.1038/s41467-017-00089-3. Read more at: https://phys.org/news/2017-07-ultra-fast-vortices-superconductors.html#jCp


sexta-feira, 4 de março de 2016

Será que a NSA finalmente construiu seu computador espião? (Will the NSA Finally Build Its Superconducting Spy Computer?)




Hoje, microchips de silício estão presentes em todos os aspectos da computação digital. Mas seu domínio nunca foi uma conclusão óbvia. Ao longo da década de 1950, engenheiros elétricos e outros pesquisadores exploraram muitas alternativas para construir os computadores digitais.
Uma delas instigou a imaginação da Agência Nacional de Segurança (NSA) dos EUA: um supercomputador supercondutor. Tal máquina poderia tirar proveito dos materiais supercondutores que ao serem refrigerados não exibem qualquer resistência elétrica. Essa propriedade extraordinária traz a promessa de computadores que poderiam processar números e códigos mais rápidos do que os sistemas baseados em transistores e consumiria muito menos energia.
     Por seis décadas, a partir de meados de 1950 até hoje, a NSA tem repetidamente perseguido esse sonho, em parceria com pesquisadores industriais e acadêmicos. A agência patrocinou projetos significativos para construir um computador supercondutor. Porém, o esforço foi abandonado em face do ritmo acelerado da Lei de Moore e o aumento surpreendente no desempenho e redução no custo de microchips de silício.
     Agora a Lei de Moore está balbuciando, e os fabricantes de supercomputadores do mundo todo estão enfrentando uma crise energética. Simuladores de armas nucleares, criptógrafos e outros, almejam os supercomputadores em exoescala capazes de rodar 1.000 petaflops - 1 milhão de trilhões de operações de ponto flutuante por segundo - ou mais. O supercomputador mais rápido do mundo está na China e possui capacidade de 34 petaflops e consome cerca de 18 megawatts de energia. Isso é aproximadamente a quantidade de eletricidade usada instantaneamente por 14.000 famílias dos EUA. Projeções variam dependendo do tipo de arquitetura do computador usado, mas uma máquina em exoescala construída com os melhores microchips de silício de hoje, podem requerer centenas de megawatts.
     A busca pela exoescala pode levar ao computador supercondutor. E a IARPA (Intelligence AdvancedResearch Projects Activity), está fazendo o máximo que pode. Com novas formas de lógica e memória supercondutora em desenvolvimento, a IARPA lançou um programa ambicioso para criar as peças fundamentais de um supercomputador supercondutor. Nos próximos anos, o esforço pode mostrar se a tecnologia realmente irá bater o silício.
     O sonho da NSA foi inspirado pelo engenheiro elétrico Dudley Buck. Quando se mudou para o MIT em 1950, Buck permaneceu como um consultor militar, mantendo a Agência de Segurança das Forças Armadas, que rapidamente se tornou a NSA, a par dos novos desenvolvimentos de computação em Cambridge.


Na década de 1950, Dudley Buck imaginou computadores rápidos e eficientes em termos energéticos. Estes o levaram ao seu comutador supercondutor, o criotron.


     Buck logo relatou em seu próprio trabalho uma nova chave supercondutora, ele batizou de criotron. O dispositivo funciona por comutação de um material entre o seu estado normal e o estado supercondutor. Certo número de elementos metálicos supercondutores e ligas chegam a esse estado quando são resfriados abaixo de uma temperatura crítica próxima do zero absoluto. Uma vez que o material se torna supercondutor, um campo magnético suficientemente forte pode trazer o material de volta ao seu estado normal.
     Neste processo, Buck viu um disjuntor digital. Ele enrolou um minúsculo fio "controle" em torno de um fio "porta", e mergulhou o par em hélio líquido. Quando a corrente fluiu através do controle, o campo magnético criou uma porta em seu estado de resistência normal. Quando a corrente de controle foi desligada, a porta tornou-se supercondutora novamente.
     Buck pensou que os criotrons poderiam ser usados para moldar computadores rápidos e energeticamente eficientes. A NSA financiou o seu trabalho em circuitos de memória criotron, bem como um projeto mais amplo sobre circuitos criotron digitais da IBM.
     Engenheiros continuaram o desenvolvimento dos circuitos criotrons na década de 1960, apesar da morte súbita e prematura de Buck em 1959. Mas as baixíssimas temperaturas do hélio líquido e o tempo necessário para os materiais transitarem entre os estados supercondutor-normal limitaram as velocidades de chaveamento. A NSA, eventualmente, cessou o financiamento, e muitos pesquisadores trocaram a eletrônica supercondutora pela do silício.
     Em 1962, o físico britânico Brian Josephson fez uma previsão sobre o tunelamento quântico em supercondutores. No tunelamento, os elétrons passam através de uma barreira isolante, promovidos por um impulso de tensão; o fluxo de elétrons ocorre com alguma resistência. Mas Josephson previu que se a barreira isolante entre dois supercondutores é fina o suficiente, uma supercorrente de elétrons pode fluir por ela sem resistência, como se a barreira não estivesse lá. Isso ficou conhecido como o efeito Josephson, e uma chave baseada no efeito foi obtida.
     Pesquisadores da IBM desenvolveram uma versão dessa opção em meados da década de 1960. A parte ativa do dispositivo era uma linha de supercondutores metálicos, separados por uma fina camada de óxido. A supercorrente tunelava através da barreira, mas só até certo ponto; se a corrente atingisse um dado valor, o dispositivo passava ao estado normal. O limite era ajustado por um campo magnético gerado pelo fluxo de corrente em uma linha de controle supercondutora vizinha. Se o dispositivo operasse perto do limite da corrente, uma pequena corrente no controle poderia mudar o limite. Ao contrário do criotron de Buck, os materiais deste dispositivo sempre se mantinham supercondutores, tornando a chave eletrônica muito mais rápida.
     Em 1973 a IBM estava trabalhando na construção de um supercomputador supercondutor baseado em junções Josephson. A unidade básica de seus circuitos foi um loop supercondutor com junções Josephson, conhecido como ‘dispositivo supercondutor de interferência quântica’, ou SQUID. A NSA cobria uma fração substancial dos custos.


Corrente em um loop supercondutor contendo uma junção Josephson, uma barreira não supercondutora gera um campo magnético com um pequeno valor, quantificado.


O programa do supercomputador supercondutor da IBM funcionou por mais de 10 anos, a um custo de cerca de US$ 250 milhões de dólares. As junções Josephson são principalmente feitas de liga de chumbo e óxido de chumbo. No final do projeto, os engenheiros ligaram a uma barreira de óxido de nióbio, imprensado entre uma liga de chumbo e uma película de nióbio, um arranjo que produziu dispositivos mais confiáveis. Mas enquanto o projeto fazia grandes progressos, os executivos da empresa não estavam convencidos de que um eventual supercomputador baseado na tecnologia poderia competir com os microchips avançados de silício. Em 1983, a IBM encerrou o programa sem nunca ter construído um computador baseado nas junções Josephson.



Image: IBM. Circuitos Josephson de 1970.


     Inspirado no projeto da IBM, o ministério industrial do Japão lançou um esforço do computador supercondutor em 1981. A parceria da pesquisa durou oito anos e produziu um verdadeiro computador que funcionava com junções Josephson. Era uma máquina pequena, de 4 bits, com apenas 1000 bits de RAM, mas poderia até rodar um programa. Porém, o projeto também foi abandonado na mesma perspectiva da IBM.



Foto: AIST. Um computador completo: O ETL-JC1, um computador supercondutor desenvolvido no Japão, incluía quatro chips de circuitos integrados baseados em junções Josephson, para a lógica e para a memória.



     Novos desenvolvimentos surgiram fora destes programas. Em 1983, pesquisadores da Bell Telephone Laboratories construíram junções Josephson de nióbio separadas por finas camadas de óxido de alumínio. Os novos comutadores supercondutores eram extraordinariamente seguros e podiam ser fabricados utilizando um processo simplificado da mesma maneira que os microchips de silício.
     Em 1985, pesquisadores da Universidade Estadual de Moscou propuseram um novo tipo de lógica supercondutora. Originalmente apelidado de resistiva, então renomeada lógica "rápida" de um único fluxo quântico, ou RSFQ (“rapid” single-flux-quantum logic), tirou proveito do fato de que uma junção Josephson pode emitir minúsculos pulsos de tensão. Integrado ao longo do tempo, eles assumem valores quantizados, múltiplos inteiros de um valor minúsculo chamado de fluxo quântico, medido em microvolts.



Imagem: Hypres. Fluxo magnético ejetado de um circuito supercondutor através de uma junção Josephson pode assumir a forma de minúsculos pulsos tensão. A presença ou ausência de um impulso, em um determinado período de tempo, pode ser usado para realizar cálculos.


     Ao usar tais pulsos, cada um com duração de um picossegundo, a RSFQ prometeu aumentar as velocidades para valores superiores a 100 gigahertz. Além disso, uma junção Josephson gasta energia na faixa de apenas um milionésimo de um picojoule, consideravelmente menos do que consumido por transistores de silício.
     As junções Josephson do Bell Labs e a RSFQ da Universidade Estadual de Moscou reacenderam o interesse na eletrônica supercondutora. Em 1997, os EUA lançaram o projeto Hybrid Technology Multi-Threaded (HTMT), que foi apoiado pela NSA e outras agências. O objetivo da HTMT era bater o nível de supercomputação convencional do silício, usando circuitos integrados RSFQ e outras tecnologias.




Foto: Judy Conlon/NASA. O projeto Hybrid Technology Multi-Threaded utilizou uma nova forma de lógica supercondutora chamada RSFQ (“rapid” single-flux-quantum logic). O membro da equipe Dmitry Zinoviev é mostrado segurando uma garrafa de hélio líquido.


     Era um programa ambicioso que enfrentou uma série de desafios. Os próprios circuitos RSFQ limitavam o potencial de eficiência da computação. Para alcançar uma velocidade elevada, a RSFQ usa resistências para proporcionar polarizações elétricas às junções Josephson, a fim de mantê-las perto do limite da comutação. Em um experimento com circuitos RSFQ de vários milhares de junções Josephson polarizáveis, a dissipação de energia estática foi insignificante. Mas em um supercomputador de escala petaflop, possivelmente com muitos bilhões de tais dispositivos, haveria significativo consumo de energia.
     O projeto HTMT terminou em 2000. Oito anos mais tarde, um supercomputador convencional da IBM foi apontado como o primeiro a alcançar o funcionamento em petaflop. Ele continha cerca de 20.000 microprocessadores de silício e consumiu 2,3 ​​megawatts.
     Para muitos pesquisadores que trabalham com a eletrônica supercondutora, o período por volta do ano 2000 marcou uma mudança: a computação quântica. Esta nova direção foi inspirada pelo trabalho do matemático Peter Shor, que sugeriu que um computador quântico pode ser uma poderosa ferramenta criptoanalítica, capaz de decifrar rapidamente comunicações criptografadas. Em seguida, os projetos em computação quântica e circuitos digitais supercondutores estavam sendo patrocinados pela NSA e a DARPA.
     Ninguém sabia como construir um computador quântico, mas muitas pessoas tinham ideias. Na IBM e em outros lugares, engenheiros e cientistas se voltaram para os principais pilares do supercondutor eletrônico, os SQUIDs e as junções Josephson. Um SQUID exibe efeitos quânticos sob operação normal, e foi bastante simples configurá-lo para funcionar como um bit quântico, ou qubit.
     Um dos centros deste trabalho foi o laboratório de ciências físicas da NSA. Construído perto da Universidade de Maryland, o laboratório é um espaço onde a NSA e pesquisadores externos podem colaborar em trabalhos relevantes para a insaciável sede da agência pelo poder da computação.
     No início dos anos de 2010, Marc Manheimer foi chefe da computação quântica no laboratório. Como ele recordou recentemente em uma entrevista, ele viu uma necessidade premente de circuitos digitais convencionais que poderiam cercar fisicamente bits quânticos, a fim de controlá-los e corrigir erros em escalas de tempo muito curtos. A maneira mais fácil de fazer isso, ele pensou, seria com elementos supercondutores, que poderiam operar com níveis de tensão e corrente semelhantes àqueles que controlariam os circuitos contendo qubits. Links ópticos poderiam ser usados para conectar este sistema híbrido com o mundo exterior e a computadores convencionais de silício.
     Manheimer afirma ainda que se tornou ciente do crescente problema do poder de computação do silício de alta performance, bem como os grandes bancos de servidores em centros de dados comerciais. “Quanto mais perto eu olhei para a lógica supercondutora”, diz ele, “ficou claro que tinha valor para a supercomputação”.
     Manheimer propôs um novo ataque direto no supercomputador supercondutor. Inicialmente ele estava cético. “Há uma história de fracasso”, disse ele. Mas, no início de 2013, tinha convencido a IARPA a financiar um programa chamado Cryogenic Computing Complexity (C3).
      A primeira fase do C3 foi a criação e avaliação de circuitos lógicos supercondutores e sistemas de memória, a serem fabricados no MIT Lincoln Laboratory - o mesmo laboratório onde Dudley Buck trabalhou.
     Em 2011, Quentin Herr da Northrop Grumman relatou uma alternativa interessante, uma forma diferente da lógica quântica chamada lógica quântica recíproca. Um circuito RQL consome 1/100.000 da energia do melhor circuito equivalente CMOS (complementary metal-oxide-semiconductor) e muito menos energia do que um circuito RSFQ equivalente.
     Uma lógica de semelhante eficiência energética chamada ERSFQ foi desenvolvida pela fabricante de eletrônicos supercondutores Hypres. A Hypres está trabalhando com a IBM, que continuou o seu trabalho fundamental de dispositivo supercondutor, mesmo depois de cancelar seu projeto de supercomputador.
     A Hypres também está colaborando com uma equipe do C3 liderada pelo laboratório Raytheon BBN Technologies, que tem sido ativo na pesquisa de computação quântica por vários anos. Lá, o físico Thomas Ohki e seus colegas vêm trabalhando em um sistema de memória criogênica que utiliza lógica supercondutora de baixo consumo para controlar, ler, e escrever em alta densidade, na magnetoresistiva RAM. Esse tipo de memória é outra mudança da computação supercondutora. Células de memória RSFQ são muito grandes. Memórias nanomagnéticas mais compactos, originalmente desenvolvidas para ajudar a estender a Lei de Moore, podem funcionar bem em baixas temperaturas.
     O circuito supercondutor mais avançado do mundo usa dispositivos baseados em nióbio. Embora tais dispositivos operem em torno de 4 Kelvin acima do zero absoluto, Manheimer diz que refrigerar é uma questão trivial.
     Uma grande questão tem sido a quantidade de energia necessária para o resfriamento, que eleva o orçamento de um computador supercondutor. Mas os defensores sugerem que não deve ser muito. Eles dizem que “a potência dissipada em um computador supercondutor é tão pequena que permanece 100 vezes mais eficiente do que um computador de silício”.
     O foco agora do C3 está nos componentes fundamentais. Essa primeira fase, que irá até 2017, pretende demonstrar os componentes centrais de um sistema de computador: um conjunto de circuitos lógicos de 64 bits capaz de rodar a uma taxa de 10 GHz e uma rede de memória criogênica com capacidade de 250 megabytes. Se esse esforço for bem sucedido, uma segunda fase de dois anos irá integrar esses componentes em um computador criogênico de tamanho ainda não especificado. Se o protótipo for considerado promissor, Manheimer estima que deve ser possível criar um verdadeiro computador supercondutor em 5 a 10 anos.
     Tal sistema seria muito menor do que os supercomputadores baseados em CMOS e requerem muito menos energia. Manheimer projeta que um supercomputador supercondutor produzido em seguida ao C3 pode rodar a 100 petaflops e consumir 200 quilowatts, incluindo o sistema de refrigeração. Seria 1/20 do tamanho do Titã, atualmente o supercomputador mais rápido nos Estados Unidos, mas oferece mais de cinco vezes o desempenho por 1/40 do consumo.



Fonte: IEEE Transactions on Applied Superconductivity, vol. 23, # 1701610; Marc Manheimer. Performance exige poder. Os supercomputadores mais poderosos de hoje consomem múltiplos megawatts (vermelho), sem incluir o arrefecimento. Computadores supercondutores com sistemas de refrigeração incluídos, são projetados para reduzir drasticamente esses requisitos de energia (azul).



     Um supercomputador com esses recursos, obviamente, representaria um salto enorme. Mas o destino do supercomputador supercondutor depende fortemente do que acontece com o silício. Enquanto um computador em exoescala feito com os atuais chips de silício pode não ser prático, grande esforço e bilhões de dólares estão sendo gastos em continuar a encolher os transistores de silício, bem como no desenvolvimento de ligações ópticas e de empilhamento 3-D. Tais tecnologias podem fazer uma grande diferença. Em julho de 2015, o presidente Barack Obama anunciou a National Strategic Computing Initiative e pediu a criação de um supercomputador em exoescala. O trabalho da IARPA sobre alternativas ao silício é parte dessa iniciativa. Para meados da década de 2020 especula-se que seja construída a primeira máquina em exoescala à base de silício. Se essa meta for cumprida, a chegada de um supercomputador supercondutor provavelmente seria adiada mais uma vez.
     Mas é muito cedo para contar com a computação supercondutora. Em comparação com o enorme investimento contínuo no silício ao longo das décadas, a computação supercondutora teve apoio escasso e intermitente. No entanto, mesmo com esta dieta de subsistência, físicos e engenheiros têm produzido uma sequencia impressionante de avanços. O apoio do programa C3, juntamente com a maior atenção da comunidade de computação, poderia levar a tecnologia adiante de forma significativa. Se tudo correr bem, os computadores supercondutores podem finalmente vir do frio.




quarta-feira, 1 de julho de 2015

Descoberta abre caminho para novos tipos de dispositivos eletrônicos supercondutores (Fabricating inexpensive, high-temp SQUIDs: Discovery paves way for new kinds of superconducting electronics)



Representação da forma do feixe de íons de hélio criando uma junção Josephson em escala atômica num cristal supercondutor de alta temperatura, o YBa2Cu3O7-d. A inserção retrata a aparência do dispositivo em escala macroscópica (milímetros). Crédito: Meng Ma / UCSD 


Físicos da Universidade da Califórnia em San Diego (UCSD), desenvolveram uma nova maneira de controlar o transporte de correntes elétricas em supercondutores de alta temperatura. A descoberta abre caminho para o desenvolvimento de dispositivos eletrônicos sofisticados, capazes de permitir que cientistas ou médicos meçam de forma não invasiva os minúsculos campos magnéticos do coração ou do cérebro, e melhorem as comunicações por satélite.
       Acreditamos que esta nova abordagem vai ter um impacto significativo e de longo alcance em medicina, física, ciência de materiais e de satélites de comunicações”, disse Robert Dynes, professor de física na UCSD. “Isso vai permitir o desenvolvimento de uma nova geração de dispositivos eletrônicos supercondutores cobrindo um amplo espectro, variando de magnetômetros altamente sensíveis para medições biomagnéticas do corpo humano até matrizes em grande escala para comunicações de banda larga por satélite. Em ciência básica, espera-se que contribua para o entendimento dos mistérios de supercondutores não convencionais e poderá desempenhar um papel importante em novas tecnologias, como a ciência da informação quântica”.
       Os pesquisadores encontraram uma forma de controlar o transporte elétrico nestes materiais através da construção de um dispositivo dentro do material supercondutor chamado de ‘junção Josephson’, análogo em função do transistor em eletrônicos semicondutores. Ele é composto de dois eletrodos supercondutores separados por cerca de um nanômetro.
       Circuitos construídos a partir de junções Josephson, chamados de dispositivo supercondutor de interferência quântica (SQUID), são usados ​​para detectar campos magnéticos extremamente pequenos, mais de 10 bilhões de vezes menor do que o da Terra. Uma grande desvantagem para esses dispositivos é a baixa temperatura necessária para a sua operação, normalmente apenas 4 graus acima do zero absoluto. Isto exige sistemas de refrigeração intrincadas e dispendiosos.



Pesquisadores da UCSD, da esquerda para a direita: Shane Cybart, Bob Dynes, Meng Ma e Ethan Cho. Crédito: Ethan Cho/UCSD


       Quase três décadas se passaram desde a descoberta do primeiro supercondutor de alta temperatura e o progresso na construção de dispositivos eletrônicos com esses materiais tem sido muito lento. Isso porque o controle do processo em escala inferior a 10 nanômetros é necessário para fazer junções Josephson de alta qualidade fora desses materiais.
       Os físicos da UCSD uniram-se a Carl Zeiss Microscopy em Peabody (Massachusetts), que dispõem de equipamentos capazes de gerar feixes altamente focados de íons de hélio, visando experimentar uma abordagem que acreditavam poder evitar problemas anteriores.
       “Usando o feixe de hélio finamente focado do Zeiss Orion's, nós irradiamos e, portanto, desordenamos uma região nanométrica do supercondutor para criar o que é chamado de ‘barreira de tunelamento quântico’ e fomos capazes de escrever circuitos Josephson diretamente em um filme fino do óxido supercondutor”, afirmou Shane Cybart, físico que desempenhou um papel fundamental nas descobertas. “Usando esse método de escrita direta eliminamos o tratamento litográfico e oferecemos a promessa de um caminho simples de circuitos quânticos que operam em temperaturas mais práticos”.
       “A chave para este método é que os supercondutores de alta temperatura são muito sensíveis aos defeitos pontuais provocados pelo feixe de íons na rede cristalina. O aumento dos níveis de irradiação tem o efeito de aumentar a resistividade e reduzir a temperatura de transição supercondutora”, disse Cybart. “Em níveis muito elevados de irradiação, o supercondutor se torna isolante. Isso nos permite usar o pequeno feixe de hélio para escrever estas junções diretamente no material”.
       Os físicos que entraram com um pedido de patente para licenciar sua descoberta, agora estão colaborando com pesquisadores médicos para aplicar o seu trabalho no desenvolvimento de dispositivos que podem medir de forma não invasiva os minúsculos campos magnéticos gerados dentro do cérebro, a fim de estudar distúrbios cerebrais, como o autismo e epilepsia em crianças.
       “No campo das comunicações, estamos desenvolvendo comunicações por satélite de taxa de transferência de dados de alta largura de banda,” disse Cybart. “Na ciência básica, estamos usando essa tecnologia para estudar materiais supercondutores cerâmicos visando ajudar a determinar a física que rege o seu funcionamento de modo a conduzir a melhores materiais que operam em temperaturas ainda mais altas”.





sexta-feira, 4 de julho de 2014

Teletransporte entre qubits supercondutores (opto-magneto-mechanical quantum interface between distant superconducting qubits)




http://www.nature.com/srep/2014/140704/srep05571/full/srep05571.html


         Pesquisadores desenvolveram uma forma de chips supercondutores comunicarem uns com os outros a longas distâncias através de uma fibra óptica, permitindo que o entrelaçamento quântico ou teletransporte (passos fundamentais para a construção de uma internet quântica) Idealizado pelo Dr. Keyu Xia e Jason Twamley do Centro de Excelência da Universidade de Macquarie, e o Dr. Michael Vanner na Universidade de Queensland. Sua ideia fez uso dos minúsculos campos magnéticos gerados pelos chips quânticos para alterar as propriedades de uma cavidade óptica, por meio de um material ‘magnetoestritivo’. Um material que é ‘magnetoestritivo’ expande fisicamente na presença de um campo magnético. A equipe foi capaz de mostrar como os campos magnéticos de chips quânticos podem se comunicar através da cavidade óptica e da fibra óptica conectada através de um chip supercondutor. 

“A criptografia quântica, transferência de informações protegidas através das leis da mecânica quântica, é uma aplicação da ciência e da tecnologia quântica que já tem aplicações comerciais”, disse o Professor Twamley. “Esta e outras aplicações como computação quântica, teletransporte quântico e detecção quântica, irão beneficiar muito com a habilidade de conectar dispositivos quânticos a longas distâncias. Chips quânticos supercondutores são uma das áreas mais promissoras para formar o hardware de computadores quânticos no futuro, e nossa interface óptica/supercondutora vai ajudar a conectar esses chips a grandes distâncias. Nossa abordagem híbrido-quântica permite tirar proveito de ambos, o poder da computação quântica com circuitos supercondutores de baixa perda e a alta velocidade das comunicações ópticas”, disse o Dr. Vanner. “É uma direção muito emocionante, tecnologia quântica certamente tem um futuro brilhante”, disse Xia.





quarta-feira, 2 de julho de 2014

Qubits supercondutores de silício (superconducting-silicon qubits)



Exemplos de dispositivos quânticos supercondutores contendo silício. (esquerda) Um circuito supercondutor pode formar um qubit supercondutor ou um dispositivo supercondutor de interferência quântica (SQUID). Correntes no circuito podem ser usadas para medir a intensidade de um campo magnético. As correntes de fluxo (em qualquer direção), também podem ser utilizadas para constituir um qubit. (centro) Separação dos fios supercondutores por um isolante, neste caso, o silício cristalino puro, forma uma junção Josephson. (direita) Precisamente colocado, regiões altamente dopadas dentro de semicondutores formam os fios supercondutores. Crédito: LPS


        Teóricos propuseram uma maneira de construir dispositivos supercondutores quânticos tais como junções Josephson e qubits, átomo por átomo, dentro de um cristal de silício. Tais sistemas poderiam combinar os aspectos mais promissores de qubits de spin de silício com a flexibilidade de circuitos supercondutores. Os resultados foram publicados na revista Nature Communications (clique aqui).
        Silício de alta qualidade é um dos fundamentos históricos da computação moderna. Mas também é promissor para a tecnologia da informação quântica. Elétrons e spins nucleares em cristais de silício puro foram medidos exibindo excelentes propriedades como qubits de longa duração, o equivalente a bits em computadores convencionais. Em um artigo publicado esta semana na revista Nature Communications, Yun-Pil Shim e Charles Tahan, da Universidade de Maryland e do Laboratório de Ciências Físicas, mostraram como qubits e dispositivos supercondutores podem ser construídos a partir de silício. A ideia é combinar as boas propriedades quânticas do silício com a flexibilidade de dispositivos supercondutores. Eles propõem o uso de técnicas de nano-fabricação “bottom-up” para construir regiões supercondutoras precisamente inseridas dentro de silício ou germânio e mostrar que esses “fios” podem ser usados para fazer junções supercondutoras tipo túnel e outros dispositivos úteis.

Qubits em supercondutores e semicondutores

        Circuitos supercondutores são extremamente personalizáveis e podem produzir dispositivos que vão desde sensores de campo magnético até circuitos lógicos clássicos. Também podem desempenhar um papel importante no processamento de informação quântica, onde eles podem ser usados ​​como uma plataforma para qubits, sistemas quânticos pequenos que residem em uma superposição de estados quânticos.
        Vários tipos de circuitos supercondutores têm sido utilizados para implementar qubits e portas lógicas quânticas com diferentes propriedades e usos potenciais. Por exemplo, em um tipo de circuito, a corrente pode fluir em qualquer dos dois sentidos. Estas alternativas constituem os dois estados superpostos necessários para o estabelecimento de um qubit. Os dois estados podem ser rotulados de “0” e “1”, em analogia com bits clássicos. Pulsos de microondas podem dirigir as transições entre os dois níveis que permitem portas lógicas quânticas.
        Em geral, os sistemas quânticos são objetos delicados e são suscetíveis ao ruído e outros fatores ambientais que diminuem o desempenho. Circuitos quânticos devem proteger qubits de interferência externa durante o tempo que o cálculo prosseguir. Apesar do rápido progresso na qualidade dos qubits supercondutores (vida superior a 100 microssegundos), as taxas de erro ainda são limitadas pela perda nos metais, isolantes, substratos e interfaces que compõem os dispositivos supercondutores heterogêneos.
Qubits de spin são exemplos de qubits feitos no estado sólido. O spin é uma propriedade quântica de partículas como o elétron; físicos muitas vezes pensam a rotação de um elétron como sendo um pequeno ímã, que irá, naturalmente, apontar na direção de um campo magnético aplicado. Aqui, os estados e os 1 0 correspondem às duas possíveis orientações do spin do elétron, para cima ou para baixo. Uma vez que a rotação é naturalmente dissociada da carga em alguns sistemas (ou seja, as informações armazenadas na direção do spin não serão perdidas, movendo o elétron ou ser abalada por ruído elétrico), qubits de spin são candidatos promissores para um projeto robusto de qubit. Além disso, o uso de dispositivos semicondutores epitaxiais e a capacidade de mergulhar qubits de spin no fundo de um meio de semicondutores, longe de ruído em interfaces e superfícies, resultou em qubits que vivem por alguns segundos ou até mesmo horas, em algumas situações, muito mais do que qubits supercondutores.

Dispositivos práticos

Shim e Tahan propuseram a utilização das melhores características de qubits supercondutores e semicondutores. Eles pretendem fazer fios supercondutores e cruzamentos, a partir do qual qubits e sensores podem ser feitos, colocando (ou dopando) átomos receptores (como o boro ou alumínio, elementos que aceitam elétrons) em regiões específicas dentro do cristal de silício. Eles sugerem que uma técnica desenvolvida recentemente (litografia de hidrogênio STM), pode ser usada para fazer exatamente isso. Lançado pela Michelle Simmons, da Universidade de New South Wales, uma ponta do microscópio de varredura por tunelamento (STM) é usada para remover seletivamente os átomos de hidrogênio na superfície do silício (ou germânio). A dopagem de gás, tais como a fosfina, pode então ser introduzida, permitindo a inserção seletiva de impurezas com precisão atômica. “Se os átomos aceitadores podem ser colocados em densidade suficiente sobre camadas, então regiões supercondutoras podem ser fabricadas dentro do silício e, em seguida, encapsulada com silício cristalino,” diz o Dr. Shim. Um em cada quatro átomos de silício foram substituídos dessa maneira. Geralmente, quanto maior a densidade de dopante, maior será a temperatura crítica supercondutora. Os cientistas aprenderam cerca de 10 anos atrás que o silício pode ser supercondutor quando dopado com densidade suficiente de átomos aceitadores, como o boro. Nos últimos anos, a qualidade desses sistemas de silício supercondutores tem melhorado muito, produzindo material supercondutor com temperaturas críticas próximas de 1 K e ainda deixando o cristal em boas condições (em outras palavras, ainda é de silício). Ao calcular as propriedades dessas regiões supercondutoras-semicondutoras, Shim e Tahan mostram que os fios com temperatura crítica suficiente podem ser construídos com a abordagem ‘bottom-up’ de litografia de hidrogênio.
Finalmente, eles mostram que os tipos de qubits supercondutores observados em amostras de metal podem ser construídos no sistema de silício, bem como fornecer as exigências geométricas necessárias para sua fabricação. “Há um esforço em curso para melhorar a qualidade da barreira epitaxial de tunelamento”, disse Charles Tahan, “mas nenhum trabalho anterior para fazer todo o dispositivo a partir de um único cristal semicondutor. Até onde sabemos, esta é a primeira proposta sobre a viabilidade do silício para junções Josephson e qubits. Também estou animado sobre o potencial desses sistemas para outros dispositivos, como sensores e detectores de partículas.”
Além da possibilidade de circuitos supercondutores construídos dentro de um cristal homogêneo de silício, dispositivos supercondutores-semicondutores como estes poderiam ser utilizados para construir outros tipos de sistemas quânticos exóticos de muitos corpos em escala atômica, e até mesmo atuar como banco de testes para a nossa compreensão da supercondutividade.


sexta-feira, 2 de agosto de 2013

Aplicações dos supercondutores (applications of superconductors)



       
       Segue abaixo uma pequena lista contendo algumas das mais importantes aplicações práticas dos sistemas supercondutores. O objetivo desse post é fornecer apenas uma ideia geral sobre onde são empregados estes materiais. Para uma visão mais profunda, vejas os links nas laterais desse blog e encontre livros para download gratuito como, por exemplo, Applications of High-Tc Superconductivity. Obs.: clicando nos links e nas imagens, a página será direcionada para a fonte das informações. Veja cada link e enriqueça ainda mais seus conhecimentos.





        
             Componentes SQUID                              SQUID

O SQUID é o equipamento mais sensível para a detecção de campos magnéticos, capaz de medir intensidades da ordem de 10–15 T. O campo da terra é em torno de 10–6 T e o do cérebro humano é por volta de 10–13 T. Em geral, o SQUID é usado para realizar medidas magnéticas de várias espécies de materiais, sendo por isso frequentemente denominado de magnetômetro SQUID. Sua capacidade de detecção é proporcionada pelas famosas junções Josephson.


Esquema básico de uma junção Josephson

Brian David Josephson previu que seria possível o tunelamento de pares de Cooper entre dois supercondutores separados por uma distância menor que 10 Å, na ausência de uma voltagem externa. A confirmação experimental de sua previsão veio no ano de 1963 por Anderson e Rowell. Uma junção Josephson é formada por dois supercondutores fracamente acoplados através de uma fina película isolante. A película pode ser feita a partir da oxidação do filme da base ou pela deposição de camadas adicionais de um metal oxidado, de um semicondutor ou de um metal normal. Quando utilizado material isolante, a espessura da barreira é de alguns nanômetros. Para uma barreira feita de material semicondutor ou normal, ela possui espessura de 10 a 100 vezes maior.
No SQUID, a corrente que entra no dispositivo é dividida em duas componentes que atravessam as duas JJ na forma de correntes de pares de Cooper. Quando o SQUID é submetido a um campo magnético, cada corrente varia periodicamente, passando por máximos consecutivos à medida que o fluxo magnético passa por múltiplos do quantum fundamental, . Dessa maneira, por meio de um circuito contador, pode-se determinar o número de máximos que a corrente atravessa e conhecer assim o fluxo magnético final.
Outra aplicação amplamente divulgada do SQUID é a magnetoencefalografia. Uma técnica que permite mapear o campo magnético gerado pela atividade cerebral, através de sensores que atuam em conjunto com um SQUID.





Para atingir sua temperatura ideal de condução, o cabo supercondutor é resfriado com nitrogênio líquido.[Imagem: Nexans]

        Apesar de alguns materiais apresentaram altas temperaturas críticas e elevadas densidades de corrente, um grande desafio está na confecção de fios. Os cupratos ainda são os campeões da TC, mas por serem materiais cerâmicos, ainda é impraticável substituir os comuns fios de cobre por supercondutores. Apesar disso, várias pesquisas estão dando ótimos resultados, como é o caso do maior cabo supercondutor do mundo. Instalado na Alemanha, unindo duas subestações na cidade de Ruhr e projetado para suportar uma carga de 40 MW (megawatts), o cabo será formado por seções concêntricas operando a 10.000 volts. Segundo engenheiros do Instituto de Tecnologia Karlsruhe, que projetaram o cabo, ele será o primeiro a incorporar um sistema de proteção contra sobrecargas, com limitador de corrente. O cabo supercondutor terá 1 km de extensão - para se ter uma ideia, o recorde mundial de intensidade de corrente elétrica foi batido com um cabo supercondutor de 30 metros de comprimento. (Fonte: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=maior-cabo-supercondutor-mundo)


Sistema de cabos supercondutores instalados em Nova York
Imagem da American Superconductor



Espectrômetro RMN da Oxford

        Esta técnica se baseia em gerar um campo magnético e orientar o spin dos núcleos (ou magnetização dos núcleos), após isto são gerados pulsos magnéticos que irão perturbar a magnetização dos spins e é medido o tempo que o spin demora para voltar à magnetização inicial. A intensidade do campo magnético necessária para orientar o núcleo dos átomos é obtida com o uso de supercondutores. No interior do equipamento, materiais supercondutores imersos em hélio líquido permitem gerar campos magnéticos altíssimos pela passagem de corrente elétrica.

LHC: Large Hadron Collider – Grande Colisor de Hádrons


Anel do LHC
       
        O Grande Colisor de Hádrons (LHC) do CentroEuropeu de Pesquisas Nucleares (CERN) é o maior acelerador de partículas do mundo. O LHC consiste de um anel de 27 km de magnetos supercondutores com uma série de estruturas de aceleração para aumentar a energia das partículas ao longo do caminho. O enorme campo magnético necessário para acelerar as partículas a altíssimas velocidades próximas à da luz é gerado a partir dos supercondutores.

Outras aplicações

Limitadores de corrente



Motor


MagLev – trens de levitação magnética







Separador magnético industrial



Pesquisas em fusão nuclear



        Ainda há muitas outras aplicações dos materiais supercondutores que não foram mencionadas aqui. A maioria delas não faz parte do cotidiano do cidadão comum, como a computação quântica, por exemplo. É provável que nos próximos 20 anos a supercondutividade se aproxime mais da vida cotidiana e traga maiores benefícios pra humanidade. Espero e torço para que pesquisadores brasileiros tenham grande contribuição nesta jornada.

Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!