Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador tântalo. Mostrar todas as postagens
Mostrando postagens com marcador tântalo. Mostrar todas as postagens

domingo, 28 de julho de 2019

Geladeira supercondutora chegará perto do zero absoluto


Redação do Site Inovação Tecnológica - 10/07/2019




Em vez de um refrigerante que oscila entre os estados líquido e gasoso, o refrigerador quântico emparelha e desemparelha os pares de elétrons em materiais supercondutores. [Imagem: Michael Osadciw/Universidade de Rochester]



Refrigerador definitivo
Imagine uma geladeira tão fria que possa levar átomos aos seus estados fundamentais, perto do zero absoluto. Sreenath Manikandan e colegas dos EUA e da Itália conceberam um refrigerador com essa capacidade usando as propriedades da supercondutividade. Eles batizaram o equipamento de “geladeira quântica” porque tanto as propriedades da supercondutividade utilizadas, quanto os efeitos gerados nos átomos individuais assim congelados, são ditados pela mecânica quântica.
O ambiente ultrafrio produzido é propício para gerar os efeitos necessários para aprimorar as tecnologias quânticas, por exemplo, tentando levar diferentes materiais para seu estado supercondutor, ou testando qubits para avaliar as melhores tecnologias para os futuros computadores quânticos.



Geladeira comum
Embora os refrigeradores quânticos supercondutores não sirvam para uso na cozinha, seu princípio operacional é bastante semelhante: as geladeiras tradicionais não funcionam tornando seu conteúdo mais frio, mas removendo o calor, tirando-o de seu interior e levando-a para outra região no espaço, neste caso, o lado de fora da geladeira.
Isto é feito movendo um fluido - o refrigerante - entre reservatórios quentes e frios, e mudando seu estado de líquido para gasoso. O refrigerante em estado líquido passa por uma válvula de expansão, que diminui sua pressão e temperatura à medida que a expansão o faz passar para o estado gasoso. O refrigerante agora frio passa através dos canos em formato de bobina do evaporador no interior da caixa da geladeira, absorvendo o calor desse ambiente fechado. O refrigerante é então novamente comprimido por um compressor alimentado por eletricidade, elevando ainda mais sua temperatura e pressão e transformando-o de um gás em um líquido quente. O líquido quente condensado, mais quente que o ambiente externo, flui através das serpentinas do condensador na parte externa da geladeira, irradiando calor para o meio ambiente. O líquido então reentra na válvula de expansão e o ciclo se repete.



Como se poderia esperar, o refrigerador quântico é minúsculo, do tamanho de um chip, mas o suficiente para guardar suas partículas atômicas e subatômicas. [Imagem: Manikandan et al. - 10.1103/PhysRevApplied.11.054034]



Geladeira quântica supercondutora
A geladeira supercondutora é parecida. No entanto, em vez de um refrigerante que passa de um estado líquido para gasoso, ela usa os chamados pares de Cooper - elétrons que viajam emparelhados e parecem explicar o próprio fenômeno da supercondutividade - fazendo-os emparelhar e desemparelhar.
“Estamos fazendo exatamente a mesma coisa que uma geladeira tradicional, mas com um supercondutor,” explicou Manikandan.
Em vez de serpentinas, válvulas e um compressor, tudo acontece em uma pilha de metais dispostos em camadas, colocados dentro de uma geladeira de diluição criogênica, já fria.
A camada inferior da pilha é uma folha de nióbio supercondutor, que funciona como um reservatório quente, semelhante ao ambiente externo de um refrigerador tradicional. A camada intermediária é tântalo supercondutor, que é a substância de trabalho, semelhante ao refrigerante da geladeira tradicional. A camada superior é de cobre, que é o reservatório frio, semelhante ao interior da geladeira tradicional.
Quando uma corrente elétrica é aplicada paulatinamente ao nióbio, produz-se um campo magnético que penetra na camada de tântalo, fazendo com que seus elétrons supercondutores se emparelhem, fazendo a transição para seu estado normal e perdendo calor. A camada de tântalo agora fria absorve o calor da camada de cobre, que se torna mais quente.
O campo magnético é então lentamente desligado, fazendo com que os elétrons no tântalo se emparelhem e voltem a se transformar em um estado supercondutor, e o tântalo fica mais quente que a camada de nióbio. O excesso de calor é então transferido para o nióbio. O ciclo se repete, mantendo uma temperatura baixa na camada superior de cobre.
Mas como a substância de trabalho no refrigerador quântico é um supercondutor, “são os pares de Cooper no cobre que desemparelham e ficam mais frios quando você aplica um campo magnético lentamente a temperaturas muito baixas, levando o atual refrigerador de última geração [a geladeira de diluição criogênica] a um patamar fundamental e arrefecendo-a ainda mais,” explicou Manikandan.



Utilidades do refrigerador quântico supercondutor
Em vez de armazenar alimentos, a geladeira quântica supercondutora poderá ser usada para armazenar coisas como qubits, as unidades básicas dos computadores quânticos, que precisam ser superfrios para não sofrerem interferências e perderem os dados.
Essa geladeira também será útil para resfriar sensores quânticos, que medem a luz de forma muito eficiente e são fundamentais em sensores muito delicados, como os usados nos telescópios, ou para fazer imagens de tecidos profundos usando aparelhos de ressonância magnética.



Bibliografia

Artigo: Superconducting Quantum Refrigerator: Breaking and Rejoining Cooper Pairs with Magnetic Field Cycles
Autores: Sreenath K. Manikandan, Francesco Giazotto, Andrew N. Jordan.
Revista: Physical Review Applied.
Vol.: 11, 054034.
DOI:10.1103/PhysRevApplied.11.054034.



segunda-feira, 13 de julho de 2015

Usando nióbio e tântalo em produtos supercondutores (Using Niobium and Tantalum in Superconducting Products)




A empresa H.C. Starck oferece hastes e folhas de tântalo e nióbio para a fabricação de fios supercondutores de baixa temperatura, onde resfriamento criogênico é necessário para manter o material abaixo da temperatura crítica.
       A empresa também fornece serviços de extrusão de feixes de fios de grande diâmetro para atender os requisitos dos clientes. Tântalo (Ta) e nióbio (Nb) apresentam propriedades especiais, que os tornam uma opção adequada para várias aplicações com supercondutores:

    - Aceleradores de partículas
    - Equipamentos médicos (RMN e RMI)
    - Levitação magnética
    - Equipamentos de pesquisa em fusão nuclear
    - Espectroscopia de massa

As folhas e as hastes de tântalo e nióbio da H.C. Starck têm sido usadas ​​em projetos científicos de grande escala para desenvolver reatores de fusão para produção de energia limpa e em grandes experimentos de acelerador de partículas. Os supercondutores são críticos para estes experimentos que envolvem a suspensão e controladores de plasmas de alta energia.
       Durante a produção do fio supercondutor, é tomado cuidado para garantir que as hastes e as folhas tiveram sua composição química, propriedades mecânicas e rugosidade de superfície, rigorosamente controladas. Isto é importante para permitir um melhor processamento e ajuda a alcançar um fio supercondutor de alta qualidade.
       As folhas são frequentemente utilizadas como uma barreira de difusão entre o estanho e cobre, e as hastes são usadas principalmente para a produção de fios supercondutores de Nb3Sn. Estes fios são usados ​​em aplicações de alto campo magnético.
       O tântalo é usado principalmente em supercondutores para criar uma barreira de difusão confiável e estável entre a matriz de estanho e cobre. Essa barreira de difusão começa como uma folha de tântalo, cuja largura é reduzida para apenas uma fração da sua largura original durante o curso do processo de estiramento.
       Cuidados devem ser tomados para assegurar que a camada de tântalo não seja danificada e não deve haver qualquer contato direto entre o estanho e cobre. Esta é a razão pela qual a qualidade original da superfície, a uniformidade de espessura, as propriedades mecânicas e a microestrutura tem uma grande importância. Se essas propriedades não são controladas adequadamente, isso resultaria em pobres propriedades magnéticas, rendimentos reduzidos e vários outros efeitos indesejados.
       As propriedades do nióbio são tão importantes quanto as do tântalo, mas por razões ligeiramente diferentes. Este é o lugar onde a H.C. Starck se destaca. A empresa desenvolveu processos que facilitam o controle rigoroso de todas as propriedades e parâmetros chave. A H.C. Starck continua a fazer avanços na otimização das propriedades mecânicas ou microestruturais em suas instalações.
       A Figura 1 mostra o mapa EBSD e o pólo de hastes de nióbio em seção transversal.

 
Figura 1. Mapa EBSD e pólo das hastes de nióbio em secção transversal


As especificações das hastes de nióbio e tântalo são:
    - Controle microestrutural
    - Em conformidade com a norma ASTM B392 (Nb) e B365 (Ta)
    - Propriedades mecânicas e químicas consistentes
    - Comprimento máximo: 2,5 a 7,5 m
    - Diâmetros: 10 a 100 mm

As especificações das folhas de nióbio e tântalo são:
    - Química consistente
    - Excelente qualidade de superfície
    - Propriedades mecânicas sintonizados com as necessidades dos clientes
    - Em conformidade com a norma ASTM B393 (Nb) e B708 ​​(Ta)
    - Folha: 0,25 a 2,5 milímetros de espessura, até 1m de largura
    - Outras dimensões podem ser disponibilizadas mediante pedido


H.C. Starck presta serviços de extrusão para produção de fios supercondutores de baixa temperatura (Figura 2). A prensa de 5,500 mt é integrada com controles avançados para reduções ótimas e controle dimensional preciso. A alta tonelagem leva a propriedades excelentes dos fios e melhores rendimentos.



Figura 2. Tarugo para extrusão


O tarugo para extrusão opera sob as seguintes condições:
    - Temperatura de extrusão: vasta gama, atmosfera controlada
    - Força de pressão: 5500 toneladas
    - Diâmetro do tarugo de entrada: 152 a 432 milímetros (6-17 ")

Tântalo e nióbio são materiais supercondutores de baixa temperatura que continuarão sendo utilizados em aceleradores de partículas grandes e poderosos.
       Para obter mais informações visite o site da H.C. Starck.



Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!