Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador Nb. Mostrar todas as postagens
Mostrando postagens com marcador Nb. Mostrar todas as postagens

domingo, 28 de julho de 2019

Geladeira supercondutora chegará perto do zero absoluto


Redação do Site Inovação Tecnológica - 10/07/2019




Em vez de um refrigerante que oscila entre os estados líquido e gasoso, o refrigerador quântico emparelha e desemparelha os pares de elétrons em materiais supercondutores. [Imagem: Michael Osadciw/Universidade de Rochester]



Refrigerador definitivo
Imagine uma geladeira tão fria que possa levar átomos aos seus estados fundamentais, perto do zero absoluto. Sreenath Manikandan e colegas dos EUA e da Itália conceberam um refrigerador com essa capacidade usando as propriedades da supercondutividade. Eles batizaram o equipamento de “geladeira quântica” porque tanto as propriedades da supercondutividade utilizadas, quanto os efeitos gerados nos átomos individuais assim congelados, são ditados pela mecânica quântica.
O ambiente ultrafrio produzido é propício para gerar os efeitos necessários para aprimorar as tecnologias quânticas, por exemplo, tentando levar diferentes materiais para seu estado supercondutor, ou testando qubits para avaliar as melhores tecnologias para os futuros computadores quânticos.



Geladeira comum
Embora os refrigeradores quânticos supercondutores não sirvam para uso na cozinha, seu princípio operacional é bastante semelhante: as geladeiras tradicionais não funcionam tornando seu conteúdo mais frio, mas removendo o calor, tirando-o de seu interior e levando-a para outra região no espaço, neste caso, o lado de fora da geladeira.
Isto é feito movendo um fluido - o refrigerante - entre reservatórios quentes e frios, e mudando seu estado de líquido para gasoso. O refrigerante em estado líquido passa por uma válvula de expansão, que diminui sua pressão e temperatura à medida que a expansão o faz passar para o estado gasoso. O refrigerante agora frio passa através dos canos em formato de bobina do evaporador no interior da caixa da geladeira, absorvendo o calor desse ambiente fechado. O refrigerante é então novamente comprimido por um compressor alimentado por eletricidade, elevando ainda mais sua temperatura e pressão e transformando-o de um gás em um líquido quente. O líquido quente condensado, mais quente que o ambiente externo, flui através das serpentinas do condensador na parte externa da geladeira, irradiando calor para o meio ambiente. O líquido então reentra na válvula de expansão e o ciclo se repete.



Como se poderia esperar, o refrigerador quântico é minúsculo, do tamanho de um chip, mas o suficiente para guardar suas partículas atômicas e subatômicas. [Imagem: Manikandan et al. - 10.1103/PhysRevApplied.11.054034]



Geladeira quântica supercondutora
A geladeira supercondutora é parecida. No entanto, em vez de um refrigerante que passa de um estado líquido para gasoso, ela usa os chamados pares de Cooper - elétrons que viajam emparelhados e parecem explicar o próprio fenômeno da supercondutividade - fazendo-os emparelhar e desemparelhar.
“Estamos fazendo exatamente a mesma coisa que uma geladeira tradicional, mas com um supercondutor,” explicou Manikandan.
Em vez de serpentinas, válvulas e um compressor, tudo acontece em uma pilha de metais dispostos em camadas, colocados dentro de uma geladeira de diluição criogênica, já fria.
A camada inferior da pilha é uma folha de nióbio supercondutor, que funciona como um reservatório quente, semelhante ao ambiente externo de um refrigerador tradicional. A camada intermediária é tântalo supercondutor, que é a substância de trabalho, semelhante ao refrigerante da geladeira tradicional. A camada superior é de cobre, que é o reservatório frio, semelhante ao interior da geladeira tradicional.
Quando uma corrente elétrica é aplicada paulatinamente ao nióbio, produz-se um campo magnético que penetra na camada de tântalo, fazendo com que seus elétrons supercondutores se emparelhem, fazendo a transição para seu estado normal e perdendo calor. A camada de tântalo agora fria absorve o calor da camada de cobre, que se torna mais quente.
O campo magnético é então lentamente desligado, fazendo com que os elétrons no tântalo se emparelhem e voltem a se transformar em um estado supercondutor, e o tântalo fica mais quente que a camada de nióbio. O excesso de calor é então transferido para o nióbio. O ciclo se repete, mantendo uma temperatura baixa na camada superior de cobre.
Mas como a substância de trabalho no refrigerador quântico é um supercondutor, “são os pares de Cooper no cobre que desemparelham e ficam mais frios quando você aplica um campo magnético lentamente a temperaturas muito baixas, levando o atual refrigerador de última geração [a geladeira de diluição criogênica] a um patamar fundamental e arrefecendo-a ainda mais,” explicou Manikandan.



Utilidades do refrigerador quântico supercondutor
Em vez de armazenar alimentos, a geladeira quântica supercondutora poderá ser usada para armazenar coisas como qubits, as unidades básicas dos computadores quânticos, que precisam ser superfrios para não sofrerem interferências e perderem os dados.
Essa geladeira também será útil para resfriar sensores quânticos, que medem a luz de forma muito eficiente e são fundamentais em sensores muito delicados, como os usados nos telescópios, ou para fazer imagens de tecidos profundos usando aparelhos de ressonância magnética.



Bibliografia

Artigo: Superconducting Quantum Refrigerator: Breaking and Rejoining Cooper Pairs with Magnetic Field Cycles
Autores: Sreenath K. Manikandan, Francesco Giazotto, Andrew N. Jordan.
Revista: Physical Review Applied.
Vol.: 11, 054034.
DOI:10.1103/PhysRevApplied.11.054034.



segunda-feira, 11 de dezembro de 2017

Supercondutividade deve-se ao nióbio, não ao seu composto

Com informações da Agência Fapesp -  28/11/2017


Os filamentos de coloração branca correspondem à fase minoritária, com cerca de 98% de nióbio e 2% de boro, responsável pela supercondutividade. Já as regiões acinzentadas, em maior fração volumétrica, correspondem ao monoboreto de nióbio propriamente dito.[Imagem: F. Abud et al. - 10.1103/PhysRevMaterials.1.044803]


        Por mais de 65 anos, um composto de nióbio e boro, chamado monoboreto de nióbio (NbB), foi considerado um exemplo clássico de um material supercondutor, um material no qual a corrente elétrica flui livremente, com resistência virtualmente zero.
        Mas esse "conhecimento", registrado nos manuais de física da matéria condensada e em inúmeros artigos científicos especializados, foi agora contestado por pesquisadores das universidades de São Paulo (USP) e Estadual de San Diego (EUA).
        Os físicos descobriram que a supercondutividade detectada no material não é produzida pelo próprio monoboreto de nióbio (NbB), mas por filamentos de nióbio quase puro que margeiam os grãos microscópios do material.
        “Sabemos que o elemento nióbio (Nb), sozinho, apresenta supercondutividade quando resfriado a temperaturas muito baixas, da ordem de 9,2 Kelvin (K). Agora, descobrimos que isso não ocorre com o monoboreto de nióbio (NbB) propriamente dito. Ocorre que, nas amostras de NbB, existe uma grande fração volumétrica de NbB, mas também uma pequena quantidade de Nb quase puro. São duas fases cristalinas distintas que coexistem nos materiais estudados. É essa fase minoritária, composta por aproximadamente 98% de nióbio e 2% de boro, que se comporta como supercondutora,” explica o professor Renato de Figueiredo Jardim.
        Os pesquisadores observaram que, mesmo ocorrendo em uma pequena fração volumétrica, a fase minoritária (Nb0,98B0,02) é supercondutora e forma uma rede tridimensional através da qual a corrente elétrica pode transitar de uma extremidade a outra do material.
        É muito provável que essa característica tenha confundido os descobridores originais da supercondutividade no NbB, levando-os a atribuir a supercondutividade abaixo de aproximadamente 9 Kelvin a esse composto.
        “Identificamos claramente essa estrutura reticular por meio da microscopia eletrônica de varredura. Essa evidência visual foi, por assim dizer, uma prova qualitativa da propriedade. Mas não podíamos sustentar a nossa hipótese apenas neste ponto. Era preciso ir adiante, buscando também uma prova quantitativa, e foi isso que fizemos, aplicando um modelo termodinâmico aos dados tomados nos materiais estudados. Por meio dele, obtivemos então a comprovação procurada,” explicou Jardim.
        Segundo o pesquisador, não há, atualmente, expectativa de aplicação tecnológica para o monoboreto de nióbio. “Mas existe um 'primo' dele, o diboreto de magnésio (MgB2), que passou a despertar grande interesse desde o início da década passada. Pode ser que nossa pesquisa venha contribuir para sua aplicação tecnológica”, disse.
        Do ponto de vista macroscópico, a supercondutividade é uma propriedade exibida por certos materiais que, abaixo de uma dada temperatura, passam a conduzir corrente elétrica sem nenhuma perda de energia, isto é, sem resistência elétrica.
        “Concomitantemente a essa propriedade macroscópica existe outra propriedade, também macroscópica, que é o chamado 'diamagnetismo perfeito',” disse Jardim. Essa segunda propriedade faz com que um supercondutor, na presença de um campo magnético, expulse todo o fluxo magnético do seu interior.
        O diamagnetismo está presente em todos os materiais. Porém, é muitas vezes tão fraco que sua manifestação fica encoberta pela presença de outras respostas magnéticas mais robustas, como o ferromagnetismo - que faz o material ser atraído pelo campo magnético externo - e o paramagnetismo - que faz os dipolos magnéticos atômicos se alinharem paralelamente ao campo magnético externo.
        Quando a resposta diamagnética é suficientemente forte, como ocorre nos supercondutores, a repulsão provocada pelo campo magnético pode fazer o material levitar, um fenômeno explorado por alguns trens de alta velocidade.


Bibliografia:
Absence of superconductivity in NbB. F. Abud, L. E. Correa, I. R. Souza Filho, A. J. S. Machado, M. S. Torikachvili, R. F. Jardim. Physical Review Materials. Vol.: 1, 044803. DOI: 10.1103/PhysRevMaterials.1.044803.



terça-feira, 22 de setembro de 2015

Mais próximo de um novo tipo de computador (One step closer to a new kind of computer)





Esta imagem mostra a resistência diferencial.



Um grupo internacional de físicos, incluindo Aleksander Golubov, chefe do Laboratório de Fenômenos Quânticos Topológicos em Supercondutores, recentemente apresentou os resultados de um novo fenômeno. Os resultados podem ajudar os cientistas na criação de um novo tipo de transição isolante-condutor.
       Pesquisadores realizaram uma série de experimentos com isolantes de Mott. Estes materiais, de acordo com a teoria de bandas, devem ser condutores, mas na prática são dielétricos (isolantes). Em termos gerais, o mecanismo por trás dessa anomalia é conhecido por físicos, embora uma teoria completa para isolantes de Mott ainda não existe. Eles não entendem completamente como os materiais se transformam de isolantes em condutores.
       Ao mesmo tempo, as estimativas preliminares indicam que este efeito é capaz de abrir um novo caminho para computadores mais rápidos. A transição ocorre sob a influência de vários fatores, incluindo um campo magnético, o que permite que seja controlado a partir do exterior. Isto torna possível aos investigadores permitir o fluxo de corrente ou interrompê-lo num ponto necessário. Tal esquema pode substituir transistores comuns e, neste caso, torná-los mais rápidos e mais compactos. Mas, para isso, os cientistas devem utilizar a teoria da transição de Mott.
       A teoria pertence às concepções fundamentais que explicam as propriedades elétricas de uma substância. Ela tem uma relação direta não somente com o comportamento isolante de Mott, mas também com a supercondutividade e os fundamentos da spintrônica, uma tecnologia que pode permitir o controle do spin do elétron. Supercondutividade e spintrônica estão entre essas tendências, onde se pode esperar avanços tecnológicos radicais, o que torna o entendimento da natureza da transição de Mott tão importante - e não apenas um ponto de vista puramente teórico.
       Em sua nova pesquisa, os físicos usaram um modelo especial que lhes permitiu estudar processos quânticos no isolante de Mott com a ajuda dos chamados vórtices magnéticos. Neste modelo proposto por Valery Vinokur e David Nelson em 1993, a corrente elétrica aciona um vórtice quântico em um material supercondutor, e pode-se considerar tal vórtice o portador de carga. Neste ponto, o que é mais significativo e sobre o qual Vinokur e Nelson escreveram ao discutir transições de fase, o supercondutor com vórtices se comportou como qualquer líquido superfluido ou como o vidro, através do qual a corrente elétrica não pode passar. Variando a temperatura e o campo magnético, os cientistas converteram a amostra de um estado para outro, e estas observações, juntamente com o conjunto de dados mais recentes foram usadas como uma base para a nova pesquisa.


Esta imagem mostra a matriz feita a partir de ilhas de nióbio usada nas experiências, e o relevo da seção transversal, bem como uma vista geral (C) no microscópio óptico.



       Para a nova experiência, os cientistas criaram uma matriz quadrangular de ilhas de nióbio com diâmetro de cerca de 220 nanômetros sobre silício. Eles construíram a amostra usando métodos padrão de litografia, e, em seguida, colocaram em um criostato resfriando para 1,4 K, o que é inferior à temperatura de transição supercondutora do nióbio. As ilhas de nióbio tornaram-se supercondutoras, vórtices magnéticos se formaram nelas, e os investigadores analisaram o comportamento do sistema em diferentes condições.
       Em particular, eles mediram a resistência da amostra e descobriram que esta quantidade se transforma de forma não linear com um campo magnético crescente. De um ponto de vista teórico, os resultados sugerem que se pode ver a transição de Mott como a transição de uma substância de um estado líquido a um gás, o que abre oportunidades adicionais para analisar o fenômeno a partir da perspectiva da termodinâmica. O esquema experimental desenvolvido pelos cientistas torna as experiências relativamente simples, porque eles têm uma quantidade suficiente de métodos de litografia e temperaturas comparáveis ​​com a do hélio líquido. Vale destacar que as baixas temperaturas foram alcançadas sem o uso do caríssimo hélio líquido.


Resistência não linear da amostra e a influência de campos magnéticos sobre a resistência elétrica.










Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!