Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador aplicações da supercondutividade. Mostrar todas as postagens
Mostrando postagens com marcador aplicações da supercondutividade. Mostrar todas as postagens

quinta-feira, 25 de outubro de 2018

Primeira turbina eólica supercondutora está pronta


Redação do Site Inovação Tecnológica - 10/09/2018

Tendo passado com êxito pelos testes em laboratório, o gerador supercondutor será instalado em sua torre até o final do ano. [Imagem: EcoSwing]


A primeira turbina eólica supercondutora do mundo será instalada na costa da Dinamarca até o final deste ano. A conquista é fruto do projeto ECOSWING, financiado pela União Europeia, e promete revolucionar a indústria de energia eólica através da implantação de geradores mais leves, mais econômicos e mais potentes.
Já testada com sucesso no laboratório, o teste de campo da turbina baseada em materiais sem resistência à corrente elétrica abrirá caminho para a implantação comercial da tecnologia na próxima geração de turbinas multimegawatts.
O protótipo é capaz de produzir cerca de 3 MW (megawatts) de eletricidade impulsionado por apenas duas pás.
A grande estrela da tecnologia é o gerador, que usa supercondutores de ‘alta temperatura’ - alta em relação aos primeiros supercondutores, que funcionavam perto do zero absoluto. Pesando 40% menos do que os geradores convencionais, a máquina de última geração requer menos material em sua fabricação e é mais econômica para construir, transportar e instalar.
“O consórcio ECOSWING teve sucesso no projeto, desenvolvimento e construção do primeiro gerador eólico supercondutor de múltiplos megawatts em escala real. Essa demonstração em um ambiente operacional real lançará as bases para um produto revolucionário que mudará a maneira como as turbinas eólicas operam e vai expandir muito o setor de energia eólica,”
disse Jürgen Kellers, que chefiou o projeto, um esforço que envolveu nove parceiros industriais e acadêmicos.
       Os geradores eólicos atuais funcionam como um dínamo tradicional, com ímãs permanentes rotativos dentro de um conjunto de bobinas de cobre. A rotação cria um campo magnético variável nas bobinas, o que gera uma corrente elétrica.
       No gerador supercondutor, os ímãs são substituídos por eletroímãs, bobinas de uma fita cerâmico-metálica que se torna supercondutora sob condições extremamente frias, obtidas pela contenção das bobinas dentro de um tambor de vácuo super-resfriado com uma pequena quantidade de gás criogênico.
       Nessa temperatura ultrafria, a eletricidade passa através das bobinas com quase nenhuma resistência, permitindo fluxos de energia 100 vezes maiores do que nos geradores comuns.
       A ausência de resistência elétrica significa que muito menos material, incluindo valiosos metais de terras raras, é necessário para fabricar um gerador supercondutor de alta temperatura para obter a mesma energia, resultando em reduções substanciais de custo e peso.
       Estas vantagens permitirão que as turbinas eólicas supercondutoras sejam fabricadas em escala maior. A equipe ECOSWING prevê futuros geradores supercondutores produzindo 10 MW ou mais.




sábado, 8 de abril de 2017

Computador imita cérebro com supercondutores e LEDs





A arquitetura neuromórfica deverá superar a capacidade de cálculo do cérebro humano. [Imagem: Jeffrey M. Shainline et al. - 10.1103/PhysRevApplied.7.034013]


Computador neuromórfico

O supercomputador mais rápido do mundo, o Sunway TaihuLight, 100% chinês, executa mais cálculos por segundo do que um cérebro humano, mas consome cerca de 800.000 vezes mais energia.
Para tentar tirar essa diferença, uma equipe do Instituto Nacional de Padronização e Tecnologia dos EUA (NIST) está propondo um novo sistema de computação baseado em componentes supercondutores que se comunicam usando luz e que funciona de forma mais parecida com a arquitetura neural do cérebro humano.
Os cálculos de Jeffrey Shainline e seus colegas sugerem que seu computador-supercondutor-fotônico poderá operar com menos energia e realizar mais cálculos do que o cérebro humano - se bem que a capacidade estimada de cálculos do cérebro humano foi recentemente multiplicada por 100.


Neurônio teia de aranha

       Nos computadores atuais, cada componente semicondutor interage com apenas alguns outros, aos quais são conectados por fiações diretas. Acontece que, se cada componente fosse ligado a milhares de outros, como ocorre no cérebro, a arquitetura do circuito rapidamente se torna caótica.
       Para resolver isto, Jeffrey Shainline propõe usar fótons em vez de elétrons. Os fótons podem atuar como portadores de informação e podem se comunicar com inúmeros outros sem a necessidade de conexões com fios.
       O neurônio artificial consiste de um fio supercondutor conectado a um LED - incorporado seria o melhor termo, já que ambos fazem parte do mesmo componente. Os dois elementos atuam como detector e transmissor de sinal, respectivamente.
       Na ausência de fótons de entrada, o LED permanece desligado e o neurônio fica inativo. Quando o supercondutor absorve fótons, sua temperatura aumenta, provocando uma transição de uma fase supercondutora para uma fase metálica. Isso altera o fluxo de corrente no LED, ligando-o e tornando o neurônio ativo.
       Como essa transição requer a absorção de múltiplos fótons, o circuito pode imitar os neurônios reais, que disparam apenas se o sinal de entrada superar um limiar. Guias de onda ramificados então canalizam os fótons emitidos para milhares de outros neurônios supercondutores, compondo o que os pesquisadores chamam de “neurônio teia de aranha”.


Estrutura do computador (em cima) e de cada neurônio artificial, formado por um supercondutor e um LED (embaixo). [Imagem: Jeffrey M. Shainline et al. - 10.1103/PhysRevApplied.7.034013]


Operações

       De acordo com os cálculos da equipe, esse sistema poderá realizar 10 vezes mais operações do que o cérebro humano e consumir apenas 20 W de energia.
       Agora é aguardar que os engenheiros ponham a mão na massa e afiram se esse neurônio artificial em teia realmente funciona.





Bibliografia:
Superconducting Optoelectronic Circuits for Neuromorphic Computing. Jeffrey M. Shainline, Sonia M. Buckley, Richard P. Mirin, Sae Woo Nam. Physical Review Applied Vol.: 7, 034013. DOI: 10.1103/PhysRevApplied.7.034013

terça-feira, 21 de fevereiro de 2017

Primeiro magneto supercondutor portátil





O ímã supercondutor portátil deverá inaugurar uma nova era para os motores elétricos. [Imagem: Difan Zhou et al. - 10.1063/1.4973991]


Engenheiros da Universidade de Cambridge, no Reino Unido, construíram um magneto supercondutor portátil.
Embora a supercondutividade venha sendo usada em grandes experimentos, como no LHC, ou mesmo em equipamentos de laboratório do tamanho de uma sala, não era possível tirar proveito dela em equipamentos realmente pequenos.
O novo dispositivo portátil substitui com muitas vantagens os grandes ímãs permanentes convencionais - o protótipo alcançou um campo magnético de 3 teslas, o que é excepcional para suas dimensões.
O professor John Durrell conta que o trabalho da sua equipe se baseou nas descobertas recentes do físico Roy Weinstein, da Universidade de Houston, nos EUA, que mostrou como os eletroímãs convencionais e a magnetização por campo pulsado podem ser usados para ativar campos magnéticos supercondutores que são ‘capturados’ e sustentados como parte de um arranjo supercondutor.
Isso evita a necessidade de grandes e caros ímãs supercondutores para ‘ativar’ o sistema, permitindo construir um dispositivo portátil.
As possibilidades de uso do ímã supercondutor portátil são enormes, como sistemas menores e mais baratos de ressonância magnética para uso em hospitais de menores recursos.
“O interesse óbvio nisso é que você pode usá-lo para construir um motor menor e mais leve,” disse Durrel.


Bibliografia:
A portable magnetic field of >3 T generated by the flux jump assisted, pulsed field magnetization of bulk superconductors. Difan Zhou, Mark D. Ainslie, Yunhua Shi, Anthony R. Dennis, Kaiyuan Huang, John R. Hull, David A. Cardwell, John H. Durrell. Applied Physics Letters. Vol.: 110, Issue 6
DOI: 10.1063/1.4973991.


A significant advantage for trapped field magnet applications - A failure of the critical state model. Roy Weinstein, Drew Parks, Ravi-Persad Sawh, Keith Carpenter, Kent Davey. Applied Physics Letters. Vol.: 107, Issue 15. DOI: 10.1063/1.4933313.




sexta-feira, 4 de março de 2016

Será que a NSA finalmente construiu seu computador espião? (Will the NSA Finally Build Its Superconducting Spy Computer?)




Hoje, microchips de silício estão presentes em todos os aspectos da computação digital. Mas seu domínio nunca foi uma conclusão óbvia. Ao longo da década de 1950, engenheiros elétricos e outros pesquisadores exploraram muitas alternativas para construir os computadores digitais.
Uma delas instigou a imaginação da Agência Nacional de Segurança (NSA) dos EUA: um supercomputador supercondutor. Tal máquina poderia tirar proveito dos materiais supercondutores que ao serem refrigerados não exibem qualquer resistência elétrica. Essa propriedade extraordinária traz a promessa de computadores que poderiam processar números e códigos mais rápidos do que os sistemas baseados em transistores e consumiria muito menos energia.
     Por seis décadas, a partir de meados de 1950 até hoje, a NSA tem repetidamente perseguido esse sonho, em parceria com pesquisadores industriais e acadêmicos. A agência patrocinou projetos significativos para construir um computador supercondutor. Porém, o esforço foi abandonado em face do ritmo acelerado da Lei de Moore e o aumento surpreendente no desempenho e redução no custo de microchips de silício.
     Agora a Lei de Moore está balbuciando, e os fabricantes de supercomputadores do mundo todo estão enfrentando uma crise energética. Simuladores de armas nucleares, criptógrafos e outros, almejam os supercomputadores em exoescala capazes de rodar 1.000 petaflops - 1 milhão de trilhões de operações de ponto flutuante por segundo - ou mais. O supercomputador mais rápido do mundo está na China e possui capacidade de 34 petaflops e consome cerca de 18 megawatts de energia. Isso é aproximadamente a quantidade de eletricidade usada instantaneamente por 14.000 famílias dos EUA. Projeções variam dependendo do tipo de arquitetura do computador usado, mas uma máquina em exoescala construída com os melhores microchips de silício de hoje, podem requerer centenas de megawatts.
     A busca pela exoescala pode levar ao computador supercondutor. E a IARPA (Intelligence AdvancedResearch Projects Activity), está fazendo o máximo que pode. Com novas formas de lógica e memória supercondutora em desenvolvimento, a IARPA lançou um programa ambicioso para criar as peças fundamentais de um supercomputador supercondutor. Nos próximos anos, o esforço pode mostrar se a tecnologia realmente irá bater o silício.
     O sonho da NSA foi inspirado pelo engenheiro elétrico Dudley Buck. Quando se mudou para o MIT em 1950, Buck permaneceu como um consultor militar, mantendo a Agência de Segurança das Forças Armadas, que rapidamente se tornou a NSA, a par dos novos desenvolvimentos de computação em Cambridge.


Na década de 1950, Dudley Buck imaginou computadores rápidos e eficientes em termos energéticos. Estes o levaram ao seu comutador supercondutor, o criotron.


     Buck logo relatou em seu próprio trabalho uma nova chave supercondutora, ele batizou de criotron. O dispositivo funciona por comutação de um material entre o seu estado normal e o estado supercondutor. Certo número de elementos metálicos supercondutores e ligas chegam a esse estado quando são resfriados abaixo de uma temperatura crítica próxima do zero absoluto. Uma vez que o material se torna supercondutor, um campo magnético suficientemente forte pode trazer o material de volta ao seu estado normal.
     Neste processo, Buck viu um disjuntor digital. Ele enrolou um minúsculo fio "controle" em torno de um fio "porta", e mergulhou o par em hélio líquido. Quando a corrente fluiu através do controle, o campo magnético criou uma porta em seu estado de resistência normal. Quando a corrente de controle foi desligada, a porta tornou-se supercondutora novamente.
     Buck pensou que os criotrons poderiam ser usados para moldar computadores rápidos e energeticamente eficientes. A NSA financiou o seu trabalho em circuitos de memória criotron, bem como um projeto mais amplo sobre circuitos criotron digitais da IBM.
     Engenheiros continuaram o desenvolvimento dos circuitos criotrons na década de 1960, apesar da morte súbita e prematura de Buck em 1959. Mas as baixíssimas temperaturas do hélio líquido e o tempo necessário para os materiais transitarem entre os estados supercondutor-normal limitaram as velocidades de chaveamento. A NSA, eventualmente, cessou o financiamento, e muitos pesquisadores trocaram a eletrônica supercondutora pela do silício.
     Em 1962, o físico britânico Brian Josephson fez uma previsão sobre o tunelamento quântico em supercondutores. No tunelamento, os elétrons passam através de uma barreira isolante, promovidos por um impulso de tensão; o fluxo de elétrons ocorre com alguma resistência. Mas Josephson previu que se a barreira isolante entre dois supercondutores é fina o suficiente, uma supercorrente de elétrons pode fluir por ela sem resistência, como se a barreira não estivesse lá. Isso ficou conhecido como o efeito Josephson, e uma chave baseada no efeito foi obtida.
     Pesquisadores da IBM desenvolveram uma versão dessa opção em meados da década de 1960. A parte ativa do dispositivo era uma linha de supercondutores metálicos, separados por uma fina camada de óxido. A supercorrente tunelava através da barreira, mas só até certo ponto; se a corrente atingisse um dado valor, o dispositivo passava ao estado normal. O limite era ajustado por um campo magnético gerado pelo fluxo de corrente em uma linha de controle supercondutora vizinha. Se o dispositivo operasse perto do limite da corrente, uma pequena corrente no controle poderia mudar o limite. Ao contrário do criotron de Buck, os materiais deste dispositivo sempre se mantinham supercondutores, tornando a chave eletrônica muito mais rápida.
     Em 1973 a IBM estava trabalhando na construção de um supercomputador supercondutor baseado em junções Josephson. A unidade básica de seus circuitos foi um loop supercondutor com junções Josephson, conhecido como ‘dispositivo supercondutor de interferência quântica’, ou SQUID. A NSA cobria uma fração substancial dos custos.


Corrente em um loop supercondutor contendo uma junção Josephson, uma barreira não supercondutora gera um campo magnético com um pequeno valor, quantificado.


O programa do supercomputador supercondutor da IBM funcionou por mais de 10 anos, a um custo de cerca de US$ 250 milhões de dólares. As junções Josephson são principalmente feitas de liga de chumbo e óxido de chumbo. No final do projeto, os engenheiros ligaram a uma barreira de óxido de nióbio, imprensado entre uma liga de chumbo e uma película de nióbio, um arranjo que produziu dispositivos mais confiáveis. Mas enquanto o projeto fazia grandes progressos, os executivos da empresa não estavam convencidos de que um eventual supercomputador baseado na tecnologia poderia competir com os microchips avançados de silício. Em 1983, a IBM encerrou o programa sem nunca ter construído um computador baseado nas junções Josephson.



Image: IBM. Circuitos Josephson de 1970.


     Inspirado no projeto da IBM, o ministério industrial do Japão lançou um esforço do computador supercondutor em 1981. A parceria da pesquisa durou oito anos e produziu um verdadeiro computador que funcionava com junções Josephson. Era uma máquina pequena, de 4 bits, com apenas 1000 bits de RAM, mas poderia até rodar um programa. Porém, o projeto também foi abandonado na mesma perspectiva da IBM.



Foto: AIST. Um computador completo: O ETL-JC1, um computador supercondutor desenvolvido no Japão, incluía quatro chips de circuitos integrados baseados em junções Josephson, para a lógica e para a memória.



     Novos desenvolvimentos surgiram fora destes programas. Em 1983, pesquisadores da Bell Telephone Laboratories construíram junções Josephson de nióbio separadas por finas camadas de óxido de alumínio. Os novos comutadores supercondutores eram extraordinariamente seguros e podiam ser fabricados utilizando um processo simplificado da mesma maneira que os microchips de silício.
     Em 1985, pesquisadores da Universidade Estadual de Moscou propuseram um novo tipo de lógica supercondutora. Originalmente apelidado de resistiva, então renomeada lógica "rápida" de um único fluxo quântico, ou RSFQ (“rapid” single-flux-quantum logic), tirou proveito do fato de que uma junção Josephson pode emitir minúsculos pulsos de tensão. Integrado ao longo do tempo, eles assumem valores quantizados, múltiplos inteiros de um valor minúsculo chamado de fluxo quântico, medido em microvolts.



Imagem: Hypres. Fluxo magnético ejetado de um circuito supercondutor através de uma junção Josephson pode assumir a forma de minúsculos pulsos tensão. A presença ou ausência de um impulso, em um determinado período de tempo, pode ser usado para realizar cálculos.


     Ao usar tais pulsos, cada um com duração de um picossegundo, a RSFQ prometeu aumentar as velocidades para valores superiores a 100 gigahertz. Além disso, uma junção Josephson gasta energia na faixa de apenas um milionésimo de um picojoule, consideravelmente menos do que consumido por transistores de silício.
     As junções Josephson do Bell Labs e a RSFQ da Universidade Estadual de Moscou reacenderam o interesse na eletrônica supercondutora. Em 1997, os EUA lançaram o projeto Hybrid Technology Multi-Threaded (HTMT), que foi apoiado pela NSA e outras agências. O objetivo da HTMT era bater o nível de supercomputação convencional do silício, usando circuitos integrados RSFQ e outras tecnologias.




Foto: Judy Conlon/NASA. O projeto Hybrid Technology Multi-Threaded utilizou uma nova forma de lógica supercondutora chamada RSFQ (“rapid” single-flux-quantum logic). O membro da equipe Dmitry Zinoviev é mostrado segurando uma garrafa de hélio líquido.


     Era um programa ambicioso que enfrentou uma série de desafios. Os próprios circuitos RSFQ limitavam o potencial de eficiência da computação. Para alcançar uma velocidade elevada, a RSFQ usa resistências para proporcionar polarizações elétricas às junções Josephson, a fim de mantê-las perto do limite da comutação. Em um experimento com circuitos RSFQ de vários milhares de junções Josephson polarizáveis, a dissipação de energia estática foi insignificante. Mas em um supercomputador de escala petaflop, possivelmente com muitos bilhões de tais dispositivos, haveria significativo consumo de energia.
     O projeto HTMT terminou em 2000. Oito anos mais tarde, um supercomputador convencional da IBM foi apontado como o primeiro a alcançar o funcionamento em petaflop. Ele continha cerca de 20.000 microprocessadores de silício e consumiu 2,3 ​​megawatts.
     Para muitos pesquisadores que trabalham com a eletrônica supercondutora, o período por volta do ano 2000 marcou uma mudança: a computação quântica. Esta nova direção foi inspirada pelo trabalho do matemático Peter Shor, que sugeriu que um computador quântico pode ser uma poderosa ferramenta criptoanalítica, capaz de decifrar rapidamente comunicações criptografadas. Em seguida, os projetos em computação quântica e circuitos digitais supercondutores estavam sendo patrocinados pela NSA e a DARPA.
     Ninguém sabia como construir um computador quântico, mas muitas pessoas tinham ideias. Na IBM e em outros lugares, engenheiros e cientistas se voltaram para os principais pilares do supercondutor eletrônico, os SQUIDs e as junções Josephson. Um SQUID exibe efeitos quânticos sob operação normal, e foi bastante simples configurá-lo para funcionar como um bit quântico, ou qubit.
     Um dos centros deste trabalho foi o laboratório de ciências físicas da NSA. Construído perto da Universidade de Maryland, o laboratório é um espaço onde a NSA e pesquisadores externos podem colaborar em trabalhos relevantes para a insaciável sede da agência pelo poder da computação.
     No início dos anos de 2010, Marc Manheimer foi chefe da computação quântica no laboratório. Como ele recordou recentemente em uma entrevista, ele viu uma necessidade premente de circuitos digitais convencionais que poderiam cercar fisicamente bits quânticos, a fim de controlá-los e corrigir erros em escalas de tempo muito curtos. A maneira mais fácil de fazer isso, ele pensou, seria com elementos supercondutores, que poderiam operar com níveis de tensão e corrente semelhantes àqueles que controlariam os circuitos contendo qubits. Links ópticos poderiam ser usados para conectar este sistema híbrido com o mundo exterior e a computadores convencionais de silício.
     Manheimer afirma ainda que se tornou ciente do crescente problema do poder de computação do silício de alta performance, bem como os grandes bancos de servidores em centros de dados comerciais. “Quanto mais perto eu olhei para a lógica supercondutora”, diz ele, “ficou claro que tinha valor para a supercomputação”.
     Manheimer propôs um novo ataque direto no supercomputador supercondutor. Inicialmente ele estava cético. “Há uma história de fracasso”, disse ele. Mas, no início de 2013, tinha convencido a IARPA a financiar um programa chamado Cryogenic Computing Complexity (C3).
      A primeira fase do C3 foi a criação e avaliação de circuitos lógicos supercondutores e sistemas de memória, a serem fabricados no MIT Lincoln Laboratory - o mesmo laboratório onde Dudley Buck trabalhou.
     Em 2011, Quentin Herr da Northrop Grumman relatou uma alternativa interessante, uma forma diferente da lógica quântica chamada lógica quântica recíproca. Um circuito RQL consome 1/100.000 da energia do melhor circuito equivalente CMOS (complementary metal-oxide-semiconductor) e muito menos energia do que um circuito RSFQ equivalente.
     Uma lógica de semelhante eficiência energética chamada ERSFQ foi desenvolvida pela fabricante de eletrônicos supercondutores Hypres. A Hypres está trabalhando com a IBM, que continuou o seu trabalho fundamental de dispositivo supercondutor, mesmo depois de cancelar seu projeto de supercomputador.
     A Hypres também está colaborando com uma equipe do C3 liderada pelo laboratório Raytheon BBN Technologies, que tem sido ativo na pesquisa de computação quântica por vários anos. Lá, o físico Thomas Ohki e seus colegas vêm trabalhando em um sistema de memória criogênica que utiliza lógica supercondutora de baixo consumo para controlar, ler, e escrever em alta densidade, na magnetoresistiva RAM. Esse tipo de memória é outra mudança da computação supercondutora. Células de memória RSFQ são muito grandes. Memórias nanomagnéticas mais compactos, originalmente desenvolvidas para ajudar a estender a Lei de Moore, podem funcionar bem em baixas temperaturas.
     O circuito supercondutor mais avançado do mundo usa dispositivos baseados em nióbio. Embora tais dispositivos operem em torno de 4 Kelvin acima do zero absoluto, Manheimer diz que refrigerar é uma questão trivial.
     Uma grande questão tem sido a quantidade de energia necessária para o resfriamento, que eleva o orçamento de um computador supercondutor. Mas os defensores sugerem que não deve ser muito. Eles dizem que “a potência dissipada em um computador supercondutor é tão pequena que permanece 100 vezes mais eficiente do que um computador de silício”.
     O foco agora do C3 está nos componentes fundamentais. Essa primeira fase, que irá até 2017, pretende demonstrar os componentes centrais de um sistema de computador: um conjunto de circuitos lógicos de 64 bits capaz de rodar a uma taxa de 10 GHz e uma rede de memória criogênica com capacidade de 250 megabytes. Se esse esforço for bem sucedido, uma segunda fase de dois anos irá integrar esses componentes em um computador criogênico de tamanho ainda não especificado. Se o protótipo for considerado promissor, Manheimer estima que deve ser possível criar um verdadeiro computador supercondutor em 5 a 10 anos.
     Tal sistema seria muito menor do que os supercomputadores baseados em CMOS e requerem muito menos energia. Manheimer projeta que um supercomputador supercondutor produzido em seguida ao C3 pode rodar a 100 petaflops e consumir 200 quilowatts, incluindo o sistema de refrigeração. Seria 1/20 do tamanho do Titã, atualmente o supercomputador mais rápido nos Estados Unidos, mas oferece mais de cinco vezes o desempenho por 1/40 do consumo.



Fonte: IEEE Transactions on Applied Superconductivity, vol. 23, # 1701610; Marc Manheimer. Performance exige poder. Os supercomputadores mais poderosos de hoje consomem múltiplos megawatts (vermelho), sem incluir o arrefecimento. Computadores supercondutores com sistemas de refrigeração incluídos, são projetados para reduzir drasticamente esses requisitos de energia (azul).



     Um supercomputador com esses recursos, obviamente, representaria um salto enorme. Mas o destino do supercomputador supercondutor depende fortemente do que acontece com o silício. Enquanto um computador em exoescala feito com os atuais chips de silício pode não ser prático, grande esforço e bilhões de dólares estão sendo gastos em continuar a encolher os transistores de silício, bem como no desenvolvimento de ligações ópticas e de empilhamento 3-D. Tais tecnologias podem fazer uma grande diferença. Em julho de 2015, o presidente Barack Obama anunciou a National Strategic Computing Initiative e pediu a criação de um supercomputador em exoescala. O trabalho da IARPA sobre alternativas ao silício é parte dessa iniciativa. Para meados da década de 2020 especula-se que seja construída a primeira máquina em exoescala à base de silício. Se essa meta for cumprida, a chegada de um supercomputador supercondutor provavelmente seria adiada mais uma vez.
     Mas é muito cedo para contar com a computação supercondutora. Em comparação com o enorme investimento contínuo no silício ao longo das décadas, a computação supercondutora teve apoio escasso e intermitente. No entanto, mesmo com esta dieta de subsistência, físicos e engenheiros têm produzido uma sequencia impressionante de avanços. O apoio do programa C3, juntamente com a maior atenção da comunidade de computação, poderia levar a tecnologia adiante de forma significativa. Se tudo correr bem, os computadores supercondutores podem finalmente vir do frio.




terça-feira, 23 de fevereiro de 2016

Supercondutores podem detectar a matéria escura (Superconductors could detect superlight dark matter)





Um conjunto maciço de galáxias conhecidas como Abell 1689, captadas pelo Hubble. A lente gravitacional observada pelo Hubble em Abell 1689 indica a presença de matéria escura. Crédito: NASA, N. Benitez (JHU), T. Broadhurst (Racah Institute of Physics/The Hebrew University), H. Ford (JHU), M. Clampin (STScI),G. Hartig (STScI), G. Illingworth (UCO/Lick Observatory), ACS Science Team, ESA



      Muitas experiências estão atualmente à procura de matéria escura, substância invisível que os cientistas sabem que existe pelo seu efeito gravitacional sobre estrelas, galáxias e outros objetos. Na Terra, os cientistas estão usando aceleradores de partículas, como o Large Hadron Collider (LHC), para procurar a matéria escura. Embora os pesquisadores tenham varrido todas as suas bases de localização, esses detectores podem não ser sensíveis o suficiente para detectar a matéria escura se a massa da matéria escura for menor do que 10 GeV (10 bilhões de elétrons-volt).
       Para resolver este problema, os físicos estão trabalhando no desenvolvimento de detectores mais sensíveis. Em um novo estudo, os cientistas propuseram um novo tipo de detector feito de supercondutores. A matéria escura tem uma massa na faixa de 1 keV (1000 elétrons-volt) a 10 GeV, até um milhão de vezes mais leve do que o próton.
       “A maior importância do nosso trabalho é a capacidade potencial para detectar a matéria escura com massa entre mil a um milhão de vezes mais leve do que a massa do próton,” disse Kathryn M. Zurek, uma das principais pesquisadoras envolvidas no trabalho. “Detectores supercondutores são a única proposta para a matéria escura nesta faixa de massa”.
       Embora a maior parte da matéria escura não interaja com qualquer coisa, os cientistas assumem que ela interage com a matéria comum de alguma forma, ou então eles não poderiam detectá-la no laboratório. Mas não está claro se a matéria escura interage com os elétrons, núcleos, ambos, ou qualquer outra coisa.
       Em geral, os detectores de matéria escura são baseados no princípio de que, se uma partícula de matéria escura atingisse o detector e interagisse com ele, a colisão iria produzir outros tipos de partículas, tal como um fóton ou fônons (um quanta de vibração) numa energia específica. O material do detector é de extrema importância, pois a interação entre a matéria escura e o detector determina as propriedades específicas da partícula que é produzida. Alguns dos detectores mais sensíveis são feitos hoje em dia de xenônio líquido (detector de LZ), cristal de germânio (SuperCDMS), e outros materiais semelhantes.
       No novo estudo, os físicos mostraram que um detector de matéria escura feito de um supercondutor, tal como alumínio ultrapuro, pode ser o material mais sensível, capaz de detectar a matéria escura com uma massa de algumas centenas de keV ou menos. A sensibilidade resulta do fato de que os supercondutores possuem um band gap de zero ou muito próximo de zero. O alumínio, por exemplo, tem um pequeno gap na faixa de 0,3 MeV (0,0003 eV).
       A ideia é que uma das partículas de matéria escura que pode estar constantemente fluindo através da Terra espalhe um elétron livre no supercondutor. Em um supercondutor, os elétrons livres estão ligados em pares de Cooper com uma energia de ligação de 0,001 eV. Se uma partícula de matéria escura tem energia suficiente para promover um elétron acima do gap do material, ele vai quebrar o par de Cooper. Desta forma, o supercondutor absorve a energia da partícula de matéria escura. Em seguida, um segundo dispositivo (um calorímetro) mede a energia térmica depositada no absorvedor, proporcionando evidência direta da partícula de matéria escura.
       Os físicos preveem que melhorias razoáveis ​​na tecnologia de detector de corrente pode tornar este conceito viável no futuro próximo. Um dos maiores desafios será reduzir o ruído a partir de fontes diferentes da matéria escura, como o térmico e o ambiental. Se o detector supercondutor puder ser construído, ele irá fornecer o teste mais sensível até o momento da matéria escura e dar aos cientistas uma chance melhor de descobrir do que é feita a maior parte da matéria no universo.




terça-feira, 16 de fevereiro de 2016

Campo de força magnético protegerá astronautas contra radiação




Redação do Site Inovação Tecnológica -  10/02/2016

O campo de força magnético será gerado por fios supercondutores feitos de diboreto de magnésio (MgB2). [Imagem: SR2S/Giorgina Colleoni/Valerio Calvelli]


        Enquanto a NASA se prepara para testar um escudo magnético para proteger as naves contra o calor na reentrada na atmosfera, a ESA (Agência Espacial Europeia) trabalha em um conceito similar para proteger os astronautas contra a radiação espacial.
        Os esforços foram concentrados em um projeto chamado SR2S (Space Radiation Superconducting Shield - Escudo Supercondutor contra Radiação Espacial).
        As primeiras informações sobre o projeto foram divulgadas no ano passado por físicos do LHC, que se juntaram ao projeto para compartilhar sua larga experiência no uso dos ímãs supercondutores que deverão gerar o escudo antirradiação espacial.
        Agora a equipe europeia anunciou a conclusão do projeto básico, afirmando que “agora têm o conhecimento e as ferramentas necessárias para desenvolver escudos magnéticos para proteger os astronautas da exposição à radiação causada pelos raios cósmicos galácticos”.
        A escolha do supercondutor recaiu mesmo sobre o diboreto de magnésio (MgB2) para gerar o campo de força antirradiação, conforme anunciado inicialmente pela equipe do LHC.
        Os fios e cabos supercondutores serão dispostos de forma a gerar um campo que os engenheiros chamaram de “estrutura abóbora”, devido ao formato das linhas de força do escudo.
        “Esta é uma configuração de escudo ativo que é crucialmente leve e, portanto, adequada para as missões de longa duração no espaço profundo. A estrutura funciona reduzindo o material atravessado pelas partículas incidentes, evitando assim a geração de partículas secundárias e, por decorrência, gerando um escudo mais eficiente,” diz o comunicado do projeto.
        Esse “escudo abóbora” deverá gerar um campo magnético 3.000 vezes mais forte do que o da Terra, suficiente para projetar um campo de força de 10 metros ao redor da nave, desviando os raios cósmicos incidentes e, desta forma, protegendo os astronautas em seu interior.


Visualização artística de uma nave para voos de longa duração com o escudo antirradiação implantada ao seu redor. [Imagem: SR2S/Giorgina Colleoni/Valerio Calvelli]


        A grande restrição do projeto era o peso da estrutura geradora do campo de força, já que a adição de 1 kg à massa de uma espaçonave aumenta o custo da missão como um todo em U$ 15.000.
        Contudo, no espaço os ímãs supercondutores estarão em seu ambiente natural, dispensando os caros e pesados equipamentos de refrigeração necessários para mantê-los a quase -200° C. No frio do espaço, as naves estarão naturalmente em temperaturas próximas a essa.
        “Ainda poderão ser necessários muitos anos até que essa tecnologia esteja pronta para ser implantada de forma ativa nas missões espaciais tripuladas ao espaço profundo, mas mais testes da tecnologia SR2S continuarão a ser realizados no curto e médio prazos,” concluiu a nota.


quarta-feira, 10 de fevereiro de 2016

Máquina quântica dos sonhos da Google (Google’s Quantum Dream Machine)



John Martinis pesquisa a 30 anos como funcionam os computadores quânticos. Agora, ele pode estar à beira de finalmente fazer um útil.



       Os fundamentos teóricos da computação quântica estão bem estabelecidos. E os físicos podem construir as unidades básicas, conhecidas como qubits, dos quais um computador quântico pode ser feito. Eles podem até mesmo operar qubits juntos em pequenos conjuntos. Mas eles ainda não construíram um computador quântico completo.
       O físico John Martinis é uma figura de destaque no campo: seu grupo de pesquisa na Universidade da Califórnia, Santa Barbara, demonstrou alguns dos qubits mais confiáveis. Ele foi contratado pela Google em 2014, depois de convencer a empresa de que a tecnologia poderia amadurecer rapidamente com o apoio certo. Com seu novo laboratório, Martinis supõe que possa demonstrar um computador quântico pequeno, mas útil, em dois ou três anos. “Costumamos dizer que estamos dando à luz a indústria de computadores quânticos”, diz ele.
       A Google e a computação quântica é um jogo feito no céu algorítmico. A empresa é frequentemente definida por uma fome insaciável de dados. Mas a Google tem um vício estratégico mais urgente: a tecnologia que extrai informações dos dados, e até mesmo cria a inteligência a partir deles. Mais recentemente, a Google tem investido fortemente no desenvolvimento de software AI que pode aprender a compreender linguagem ou imagens, executar raciocínio básico, ou dirigir um carro. Tarefas estas que permanecem complicadas para os computadores convencionais, mas que deve ser trivial para os computadores quânticos. “Aprendizagem de máquina é um núcleo, um modo de transformação pelo qual estamos repensando como fazemos tudo”, diz Sundar Pichai, CEO do Google. Apoiar esse esforço seria o primeiro de muitos trabalhos para a nova indústria quântica de Martinis.


Criador de sonhos
       A perspectiva de um computador quântico fazendo algo útil dentro de poucos anos parecia remota. Pesquisadores do governo, acadêmicos e laboratórios corporativos estavam longe de combinar qubits suficientes para fazer até mesmo uma máquina simples. Uma startup canadense chamada D-Wave Systems, vendeu alguns exemplares do que chamou de “primeiros computadores quânticos comerciais do mundo”, mas passou anos sem conseguir convencer os especialistas de que as máquinas realmente estavam fazendo o que um computador quântico deveria fazer.
       Então, a NASA convocou os jornalistas para a construção do N-258 em seu centro de pesquisa, que desde 2013 tinha um computador da D-Wave comprado pela Google. Em um teste cuidadosamente projetado, o chip supercondutor dentro do computador da D-Wave foi 100 milhões de vezes mais rápido que um processador convencional.
       No entanto, este tipo de vantagem deve estar disponível em tarefas práticas da computação, não apenas em testes inventados. “Precisamos tornar mais fácil tomar um problema que surge na mesa de um engenheiro e colocá-lo no computador”, disse Neven, especialista em aprendizado de máquina. É aí que vem Martinis. Neven acha que a D-Wave não pode obter uma versão do seu quantum annealer rápido o suficiente para servir aos engenheiros da Google, então ele contratou Martinis. “Ficou claro que não podemos esperar”, diz Neven. “Há uma lista de deficiências que precisam ser superadas, a fim de chegar a uma tecnologia real”. Ele diz que os qubits no chip da D-Wave são pouco confiáveis ​​e não estão ligados entre si densamente o suficiente.
       A Google vai concorrer não só com a D-Wave, mas também com a Microsoft e a IBM, que têm projetos relevantes de computação quântica. Mas essas empresas estão focadas em projetos distantes de se tornarem úteis. Estima-se que o grupo de Martinis pode fazer um quantum annealer com 100 qubits até 2017. A D-Wave já tem 1.097 qubits, mas Neven diz que um chip de alta qualidade com menor número de qubits deve ser útil para algumas tarefas.
       O quantum annealer pode rodar apenas um determinado algoritmo, mas é adequado para as áreas que a Google mais se preocupa. As principais aplicações são reconhecimento de padrões e aprendizagem de máquina, segundo William Oliver, um membro da equipe do MIT Lincoln Laboratory, que estudou o potencial da computação quântica.
       Martinis e sua equipe estão se adaptando a muitas coisas, uma vez que os qubits são instáveis e inconstantes. Os qubits podem ser feitos de várias maneiras (Martinis usa alças de alumínio refrigeradas até se tornarem supercondutoras), mas todas representam dados por meio de estados quânticos delicados que são facilmente distorcidos ou destruídos pelo calor e ruído electromagnético.
       Qubits usam sua física frágil para fazer a mesma coisa que transistores quando usam a eletricidade em um chip convencional: representam bits binários de informação, 0 ou 1. Mas os qubits podem atingir um estado (chamado de superposição), que é 0 e 1 ao mesmo tempo. Qubits em uma superposição podem ser conectados por um fenômeno conhecido como entrelaçamento, onde uma ação realizada em um tem efeitos imediatos no outro. Esses efeitos permitem que uma única operação em um computador quântico faça o trabalho de muitas, muitas operações em um computador convencional. Em alguns casos, a vantagem de um computador quântico sobre um convencional cresce exponencialmente com a quantidade dos dados a serem trabalhados.
       A dificuldade de criar qubits estáveis ​é a razão de ainda não termos computadores quânticos. Mas Martinis acha que está quase lá. O tempo de coerência de seus qubits, ou o período de tempo que mantém uma superposição, é dezenas de microssegundos - cerca de 10.000 vezes maior que os da D-Wave.
       A confiança de Martinis no hardware do seu time o faz pensar que ele pode construir uma alternativa ainda mais poderosa para a Google. Um computador quântico universal, como seria chamado, pode ser programado para enfrentar qualquer tipo de problema, não apenas matemático. A teoria por trás dessa abordagem é melhor compreendida do que para outros annealers, em parte porque a maioria do tempo e do dinheiro investido em pesquisa de computação quântica têm se dedicado a computação quântica universal. Mas os qubits não são confiáveis o suficiente para traduzir a teoria em um computador quântico universal que funcione. Até março, quando Martinis e sua equipe se tornaram os primeiros a demonstrarem qubits que cruzaram um limiar crucial da confiabilidade para um computador quântico universal. Eles conseguiram um chip com nove qubits para executar parte de um programa de verificação de erros, o chamado código de superfície, necessário para tal computador funcionar. “Nós demonstramos a tecnologia em um ponto onde eu sabia que nós poderíamos escalar”, diz Martinis. “Este era real.”
       Martinis pretende apresentar um computador quântico universal de 100 qubits em dois anos. Isso seria um marco na ciência da computação, mas seria improvável ajudar os programadores da Google imediatamente. Tal é a complexidade do código de superfície que, apesar de um chip com 100 qubits poder executar o programa de verificação de erros, seria incapaz de fazer qualquer trabalho útil, além desse, diz Robert McDermott, que lidera um grupo de pesquisa de computação quântica na Universidade de Wisconsin. No entanto, Martinis acredita que uma vez que ele torne seus qubits confiáveis ​​o suficiente para colocar 100 deles em um chip quântico universal, estará aberto o caminho para combinar muitos mais. “Isso é algo que entendemos muito bem”, diz ele. “É difícil conseguir coerência, mas é fácil de escalá-la.”


Algoritmos estúpidos
       Quando Martinis explica porque sua tecnologia é necessária para a Google, ele não poupa os sentimentos das pessoas que trabalham na AI. “Algoritmos de aprendizagem de máquina são realmente uma espécie idiota”, diz ele, com um toque de admiração em sua voz. “Eles precisam de muitos exemplos para aprender.”
       Descobrir como os chips de Martinis podem tornar o software da Google menos estúpido recaiu para Neven. Ele acha que o poder prodigioso dos qubits vai reduzir o hiato entre aprendizagem de máquina e aprendizagem biológica e refazer o campo da inteligência artificial. “A aprendizagem da máquina será transformada em aprendizagem quântica”, diz ele. Isso poderia significar um software que pode aprender a partir de dados mais confusos, ou de menos dados, ou mesmo sem instrução explícita. Por exemplo, os pesquisadores da Google têm projetado um algoritmo que poderia permitir ao software de aprendizagem de máquina assimilar um novo truque mesmo quando metade dos dados de exemplos é incorreta. Neven comenta que este tipo de músculo computacional pode ser a chave para dar aos computadores capacidades limitadas aos seres humanos.
       Os pesquisadores da Google não podem fazer muito além de especular sobre o que exatamente poderiam ou deveriam fazer com os chips que Martinis está construindo. Vai levar tempo para construir a infra-estrutura necessária para operar um grande número de dispositivos exóticos para que eles possam contribuir materialmente para os negócios da Google.




Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!