Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador junção Josephson. Mostrar todas as postagens
Mostrando postagens com marcador junção Josephson. Mostrar todas as postagens

terça-feira, 20 de julho de 2021

Supercondutividade: um fenômeno quântico macroscópico

Supercondutividade: um fenômeno quântico macroscópico

 



Excelente palestra do físico Eduardo Miranda sobre fenômenos quânticos em escala macroscópica, incluindo a supercondutividade.

  

quarta-feira, 1 de julho de 2015

Descoberta abre caminho para novos tipos de dispositivos eletrônicos supercondutores (Fabricating inexpensive, high-temp SQUIDs: Discovery paves way for new kinds of superconducting electronics)



Representação da forma do feixe de íons de hélio criando uma junção Josephson em escala atômica num cristal supercondutor de alta temperatura, o YBa2Cu3O7-d. A inserção retrata a aparência do dispositivo em escala macroscópica (milímetros). Crédito: Meng Ma / UCSD 


Físicos da Universidade da Califórnia em San Diego (UCSD), desenvolveram uma nova maneira de controlar o transporte de correntes elétricas em supercondutores de alta temperatura. A descoberta abre caminho para o desenvolvimento de dispositivos eletrônicos sofisticados, capazes de permitir que cientistas ou médicos meçam de forma não invasiva os minúsculos campos magnéticos do coração ou do cérebro, e melhorem as comunicações por satélite.
       Acreditamos que esta nova abordagem vai ter um impacto significativo e de longo alcance em medicina, física, ciência de materiais e de satélites de comunicações”, disse Robert Dynes, professor de física na UCSD. “Isso vai permitir o desenvolvimento de uma nova geração de dispositivos eletrônicos supercondutores cobrindo um amplo espectro, variando de magnetômetros altamente sensíveis para medições biomagnéticas do corpo humano até matrizes em grande escala para comunicações de banda larga por satélite. Em ciência básica, espera-se que contribua para o entendimento dos mistérios de supercondutores não convencionais e poderá desempenhar um papel importante em novas tecnologias, como a ciência da informação quântica”.
       Os pesquisadores encontraram uma forma de controlar o transporte elétrico nestes materiais através da construção de um dispositivo dentro do material supercondutor chamado de ‘junção Josephson’, análogo em função do transistor em eletrônicos semicondutores. Ele é composto de dois eletrodos supercondutores separados por cerca de um nanômetro.
       Circuitos construídos a partir de junções Josephson, chamados de dispositivo supercondutor de interferência quântica (SQUID), são usados ​​para detectar campos magnéticos extremamente pequenos, mais de 10 bilhões de vezes menor do que o da Terra. Uma grande desvantagem para esses dispositivos é a baixa temperatura necessária para a sua operação, normalmente apenas 4 graus acima do zero absoluto. Isto exige sistemas de refrigeração intrincadas e dispendiosos.



Pesquisadores da UCSD, da esquerda para a direita: Shane Cybart, Bob Dynes, Meng Ma e Ethan Cho. Crédito: Ethan Cho/UCSD


       Quase três décadas se passaram desde a descoberta do primeiro supercondutor de alta temperatura e o progresso na construção de dispositivos eletrônicos com esses materiais tem sido muito lento. Isso porque o controle do processo em escala inferior a 10 nanômetros é necessário para fazer junções Josephson de alta qualidade fora desses materiais.
       Os físicos da UCSD uniram-se a Carl Zeiss Microscopy em Peabody (Massachusetts), que dispõem de equipamentos capazes de gerar feixes altamente focados de íons de hélio, visando experimentar uma abordagem que acreditavam poder evitar problemas anteriores.
       “Usando o feixe de hélio finamente focado do Zeiss Orion's, nós irradiamos e, portanto, desordenamos uma região nanométrica do supercondutor para criar o que é chamado de ‘barreira de tunelamento quântico’ e fomos capazes de escrever circuitos Josephson diretamente em um filme fino do óxido supercondutor”, afirmou Shane Cybart, físico que desempenhou um papel fundamental nas descobertas. “Usando esse método de escrita direta eliminamos o tratamento litográfico e oferecemos a promessa de um caminho simples de circuitos quânticos que operam em temperaturas mais práticos”.
       “A chave para este método é que os supercondutores de alta temperatura são muito sensíveis aos defeitos pontuais provocados pelo feixe de íons na rede cristalina. O aumento dos níveis de irradiação tem o efeito de aumentar a resistividade e reduzir a temperatura de transição supercondutora”, disse Cybart. “Em níveis muito elevados de irradiação, o supercondutor se torna isolante. Isso nos permite usar o pequeno feixe de hélio para escrever estas junções diretamente no material”.
       Os físicos que entraram com um pedido de patente para licenciar sua descoberta, agora estão colaborando com pesquisadores médicos para aplicar o seu trabalho no desenvolvimento de dispositivos que podem medir de forma não invasiva os minúsculos campos magnéticos gerados dentro do cérebro, a fim de estudar distúrbios cerebrais, como o autismo e epilepsia em crianças.
       “No campo das comunicações, estamos desenvolvendo comunicações por satélite de taxa de transferência de dados de alta largura de banda,” disse Cybart. “Na ciência básica, estamos usando essa tecnologia para estudar materiais supercondutores cerâmicos visando ajudar a determinar a física que rege o seu funcionamento de modo a conduzir a melhores materiais que operam em temperaturas ainda mais altas”.





domingo, 28 de junho de 2015

D-Wave Systems atinge marca de processamento de 1000 bits quânticos




A D-Wave Systems anunciou nesta semana que ultrapassou a marca de processamento de 1000 qubits (bits quânticos) com um novo chip que tem o dobro do tamanho do último criado pela própria empresa. Com isso, o processador considera 21000 possibilidades simultaneamente, o que minimiza as 2512 possibilidades que estavam disponíveis com o D-Wave Two. Para efeito de comparação, o número de possibilidades que o chip pode considerar é maior do que o número de partículas de todo o universo visível.
       Em termos práticos, a conquista tecnológica da D-Wave Systems permitirá que um computador quântico possa resolver problemas computacionais mais complexos do que qualquer outro. Isso porque o qubit, que é uma unidade de informação com propriedades quânticas, trata os dados de maneira diferente do bit comum. Em vez de considerar as informações de forma isolada, como fazem os computadores tradicionais, ele as integra para criar novas dimensões para o processamento.
       “Quebrar a barreira dos 1000 qubits marca o resultado de anos de pesquisa e desenvolvimento de nossos cientistas, engenheiros e fabricantes”, afirmou Vern Brownell, CEO da D-Wave. “Esse é um passo essencial para trazer a promessa da computação quântica para lidar com problemas mais desafiadores que as organizações possam enfrentar, sejam eles técnicos, comerciais, científicos ou de segurança nacional”.
       Os novos processadores, que compreendem mais de 128.000 junções Josephson em 6 camadas de metal num processo de 0,25 µm, são os supercondutores de circuitos integrados mais complexos já produzidos com sucesso.  Para que funcionem, esses chips precisam estar 40% mais refrigerados do que os outros processadores quânticos – que já requeriam estar próximos do zero absoluto. Com esse novo processo de fabricação, a D-Wave conseguiu também reduzir o barulho dos componentes em 50%.
       “Para a indústria de computação de alto desempenho, a promessa da computação quântica é muito emocionante. Ela oferece o potencial para resolver problemas importantes que não podem ser resolvidos hoje ou tomariam uma quantidade razoável de tempo para isso”, disse Earl Joseph, vice-presidente da IDC ao HPC.
       Baseada em Palo Alto, na Califórnia, a D-Wave é a maior fabricante de componentes de computação quântica do momento e presta serviços para a NASA e Google.




sábado, 9 de maio de 2015

Luz empurra matéria um milhão de vezes mais em ilha supercondutora (Light Pushes Matter One Million Times More On Superconducting Island)



Ilustração mostrando a ideia para a introdução de um sistema de dois níveis (qubit ou átomo artificial) em uma cavidade optomecânica. No interior da cavidade (azul), há um sistema quântico de dois níveis (verde), que é compatível mecanicamente (vermelho). Fonte (Nature): http://www.nature.com/ncomms/2015/150427/ncomms7981/fig_tab/ncomms7981_F1.html.


Quando um espelho reflete a luz, ele experimenta um leve empurrão, mas é insignificante em nossas vidas diárias. Nosso mobiliário não está em movimento devido à pressão de radiação da luz porque uma lâmpada de 100 Watt causa uma pressão de apenas um trilionésimo (uma parte em 1.000.000.000.000) da pressão atmosférica normal.
Radiação certamente pressiona matéria no espaço, as caudas dos cometas apontam tipicamente para longe do Sol, devido à pressão de radiação, e isso tem sido proposto como propulsão para velas solares. Em terra firme, a radiação tem sido aproveitada no domínio da física do laser, pode ser usada para acoplar o campo eletromagnético do laser com o movimento de pequenos osciladores mecânicos que podem ser encontradas no interior de relógios comuns. Devido à fragilidade da interação, geralmente precisa de lasers substancialmente fortes.
Um novo estudo mostra que esta pressão de radiação pode ser aumentada consideravelmente - com a ajuda de uma pequena ilha supercondutora. Jani Tuorila da Universidade de Oulu explica que a pressão de radiação nos sistemas são mensuráveis apenas quando o oscilador é atingido por milhões de fótons, porém, colocando uma ilha supercondutora entre o campo eletromagnético e o oscilador para mediar a interação, a força da pressão de radiação pode ser aumentada consideravelmente.
“Nas medidas, exploramos o acoplamento das junções Josephson, especialmente seu caráter não-linear”, diz o co-autor Juha Pirkkalainen da Universidade Aalto, o pesquisador que realizou as medições. Os pesquisadores foram capazes de alterar o acoplamento da pressão de radiação de forma significativa. Com a ilha supercondutora, a pressão de radiação aumentou um milhão de vezes.
Devido ao aumento da pressão de radiação, o oscilador observa o campo eletromagnético com a precisão de um único fóton. Correspondentemente, os osciladores revelam-se ao campo com a resolução de um único quantum de oscilações, um fônon.
A pesquisa permite a observação de fenômenos quânticos em estruturas maiores do que antes, permitindo assim estudar a validade das leis da mecânica quântica em grandes estruturas. Será que isto ocorre apenas com partículas muito pequenas? A existência de um limite superior para a região da validade não foi encontrado ainda.






quinta-feira, 9 de abril de 2015

Fazendo supercondutores mais resistentes (Making Superconductors Sturdier)


 


 

A resistência nula dos supercondutores torna estes materiais ideais para circuitos elétricos. No entanto, continuam a serem inviáveis, devido às baixas temperaturas em que operam. Isso acontece porque o estado supercondutor é altamente suscetível ao ruído térmico, o que perturba a ordem eletrônica de longo alcance necessária para manter a supercondutividade, induzindo uma transição para um estado não supercondutor na temperatura crítica. Agora Samuel Denny e colegas da Universidade de Oxford, propõem que com pulsos de radiação terahertz, os supercondutores poderiam permitir que sejam transitoriamente resfriados, reduzindo o impacto do ruído térmico.

       Os autores consideram o cuprato um material supercondutor modelo formado por camadas duplas empilhadas, onde os fluxos de corrente são perpendiculares às camadas. O material é então submetido a uma onda electromagnética na faixa do terahertz que excita modos de vibração do material (fônons). Estes, por sua vez, transferem sua excitação para os plásmons (excitações coletivas de elétrons), convertendo sua frequência. Ajustando a frequência (terahertz) de condução, os pesquisadores calculam que este sistema pode funcionar como um refrigerador, bombeando ativamente o calor para fora dos plásmons de baixa frequência. Isso ajuda a proteger de ruído térmico a ordem de longo alcance dos materiais e pode fazer a supercondutividade mais “robusta”. Por exemplo, mais corrente pode ser transportada através do material sem quebrar o estado supercondutor.

       O método proposto foi estudado para supercondutores já resfriados abaixo de suas temperaturas de transição e apenas se mantém eficaz por alguns picosegundos após a terahertz de condução ter sido desligada. Mas os autores sugerem que estratégias semelhantes, com base em técnicas de arrefecimento a laser, um dia pode ajudar a aumentar a temperatura crítica de um determinado material.

 

 


 


 

sexta-feira, 27 de fevereiro de 2015

Dispositivo de memória híbrida para computador supercondutor (Hybrid memory device for superconducting computing)

        Uma equipe de cientistas do NIST desenvolveu e demonstrou uma nova tecnologia de memória em nanoescala para computadores que usam supercondutores que poderia acelerar o advento de uma tão aguardada alternativa de baixo consumo de energia para data centers convencionais.
        Nos últimos anos, a gigantesca crescente demanda de dados de computação em nuvem, o uso da Internet, suporte a dispositivos móveis e outras aplicações, levaram a criação de recursos de computação centralizada em centenas de milhares de sites em todo o mundo.
        Essas instalações funcionam 24 horas por dia e empregam matrizes de servidores baseados em semicondutores que exigem quantidades substanciais de energia elétrica e geram grande quantidade de calor - que por sua vez exige ainda mais energia para remover.
       
 Mesmo que as necessidades de energia para todos os centros de dados norte-americanos sejam satisfeitas, as limitações inerentes dos semicondutores define o limite para a futura capacidade de processamento onde o volume de informação digital aumenta exponencialmente.
Uma tecnologia promissora é a computação que utiliza supercondutores, a qual oferece a perspectiva de trnasportar informações sem perdas através de canais de resistência zero. Em vez de usar transistores semicondutores para comutar sinais eletrônicos, estes sistemas usam componentes minúsculas chamadas junções Josephson (JJ). Estes operam perto do zero absoluto (de 4 K a 10 K), dissipam quantidades minúsculas de energia (menos de 10-19 joule por operação), e pode ser alternado entre os estados em centenas de bilhões de vezes por segundo (freqüências de gigahertz), em comparação com poucos gigahertz de computadores que utilizam semicondutores.
Até o momento, muitas tecnologias-chave como circuitos lógicos, interconexões de componentes e memória criogênica, necessárias para um computador que use supercondutores, ainda não foram desenvolvidas. Mas o Intelligence Advanced Research Projects Activity (IARPA) determinou que, graças ao recente progresso da pesquisa, as ‘bases para um grande avanço’ estão agora em vigor, e lançou um programa para investigar a viabilidade prática da computação que usa supercondutores.
Cientistas do NIST foram contratados para desenvolver as metrologias e avaliação dos métodos necessários para o programa IARPA. Mas, muito antes do início do programa um dos obstáculos mais difíceis para a computação que usa supercondutores já vinha sendo focado: a falta de um sistema de memória que pode trabalhar na temperatura criogênica e a uma velocidade impressionante dos interruptores JJ enquanto também requer energia operacional mínima.
Um módulo de memória da equipe do NIST é uma junção Josephson modificada com dimensões na escala de 100 nanômetros. Entre os dois eletrodos da junção supercondutora, os cientistas fabricaram uma barreira de multi-camada que consiste em dois materiais magnéticos diferentes, separados por um metal não magnético.
A relação entre as polaridades das duas camadas magnéticas - que podem ser alinhadas paralela ou anti-paralelamente - determina a magnitude da supercorrente na junção Josephson, e pode ser igual ou diferente de zero da tensão através da junção. Esse efeito é baseado na competição intrincada entre supercondutividade e magnetismo que foi inequivocamente demonstrada no trabalho da equipe do NIST. Esses dois estados de corrente ou tensão pode representar 0 ou 1 - valores binários para memória do computador supercondutor. O tamanho do dispositivo pode ser reduzido, como será necessário para alta capacidade de memória, sem perder a capacidade de diferenciar o estado.
As propriedades magnéticas da barreira podem ser controladas apenas através de correntes elétricas em vez do campo magnético. Isto é conseguido através de um processo chamado de transferência de torque de spin: uma corrente normal, com uma distribuição uniforme de spin, passa através da camada magnética fixa, que atua como um filtro de tal modo que os elétrons que emergem são polarizados por rotação. O momento angular associado a esse estado de spin é então transferido para a camada livre, mudando o seu alinhamento magnético. O processo é reversível. Este efeito tem sido amplamente estudado para memórias magnéticas à temperatura ambiente, mas geralmente para memórias baseadas na mudança de resistência (magnetorresistência).
Ambas operações, ler e escrever, são escaláveis ​​para nanodispositivos. Ler pode ser realizada por sondagem ad força da supercondutividade com uma energia minúscula. A energia de gravação pode ser melhorada com a engenharia do material magnético e redução do tamanho do dispositivo; o limite final é dado pela energia magnética que também é minúscula. Combinado com nonvolatility (sem necessidade de refrigeração) e velocidade, este híbrido supercondutor-magnético promete uma tecnologia alternativa para memórias de semicondutores.
Outros grupos têm desenvolvido dispositivos híbridos supercondutores-magnéticos de vários tipos. Mas o módulo do NIST é o primeiro a utilizar efeitos spintrônicos, que são particularmente difíceis de caracterizar em nanoescala. O híbrido do NIST pode ser facilmente integrado com os sistemas supercondutores, e os pesquisadores estão analisando os comportamentos de diferentes configurações e materiais de barreira sob várias condições para o uso na memória e outras funções.
“A combinação de baixa perda de lógica supercondutora não volátil, a memória magnética híbrida pode revolucionar a computação e armazenamento de dados dentro de uma década”, diz Ron Goldfarb, líder do Magnetics Group e membro de apoio da equipe do NIST. “O recente trabalho do NIST demonstrando comutação spintrônica de dispositivos híbridos de memória magnética-supercondutora foi uma prova vital de princípio. Outros grupos estão trabalhando em diferentes implementações. Devido à sua experiência de medição e imparcialidade, a NIST será responsável por testes para IARPA.
Olhando para o futuro, Goldfarb diz: “O desenvolvimento de novos tipos de processadores de computador para além dos limites dos semicondutores é uma área emergente de pesquisa interdisciplinar. Isso inclui novos tipos de lógica computacional, memória principal, memória de cache e de armazenamento em massa para supercomputadores, processadores de imagem e centros de dados. A partir de uma perspectiva de medidas, há uma necessidade de testar o protótipo e aferir a confiabilidade, reprodutibilidade, dissipação de energia e desempenho de alta velocidade desses componentes, dispositivos, circuitos, e os seus materiais constituintes”.






segunda-feira, 29 de dezembro de 2014

Supercondutores ultrafinos dão um passo (Ultrathin Superconductors Take a Step Up)




http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.247004


Filmes de metal de apenas um átomo de espessura ou dois podem se tornar supercondutores em temperaturas próximas do zero absoluto. No entanto, nestes materiais bidimensionais, pequenas imperfeições, como alterações na elevação de um átomo pode bloquear o fluxo das supercorrentes. Um novo estudo de vórtices em filmes de metal supercondutores fornece a primeira evidência direta de que defeitos atômicos se comportam como junções Josephson - estruturas feitas de dois supercondutores separados por uma barreira isolante. Os resultados implicam que os defeitos atômicos permitem o fluxo de supercorrentes a uma velocidade limitada, o que pode torná-los úteis como elementos funcionais em futuros dispositivos supercondutores 2D.
       Em 2010, físicos descobriram que filmes metálicos adsorvidos na superfície de silício poderiam se comportar como supercondutores. A descoberta veio como uma surpresa, uma vez que se esperava que as flutuações quânticas interrompessem a supercondutividade em estruturas 2D. Uma grande quantidade de pesquisa agora é dedicada a testar quão grande é a robustez desta supercondutividade. Imperfeições atômicas e outros defeitos de superfície normalmente têm pouco efeito sobre supercondutores volumétricos (3D), mas claramente influenciam o comportamento de materiais ultrafinos.
       Takashi Uchihashi e seus colegas realizaram medidas usando a microscopia de tunelamento por varredura em filmes de índio depositados em superfícies de silício. Especificamente, a equipe estudou a formação de vórtices viajando em torno de um circuito fechado que aparece em certos supercondutores quando um campo magnético externo é aplicado. Os pesquisadores observaram que a maioria dos vórtices era circular com um núcleo interior não supercondutor. No entanto, os vórtices localizados ao longo dos defeitos atômicos estavam em forma elíptica, e seus núcleos eram supercondutores. As simulações numéricas mostraram que esse comportamento era consistente com as imperfeições atômicas fornecendo um acoplamento Josephson entre diferentes patamares do filme.






sábado, 13 de setembro de 2014

Computação quântica já existe! (e usa supercondutores)


Google comercializa computador quântico


Para realizar computação quântica confiável, o sistema da D-Wave opera em temperaturas próximas do zero absoluto. [Fonte da imagem: ZDNet]


O Instituto de Física Teórica Kavli da Universidade da Califórnia em Santa Barbara (UBC) está se unindo ao Google para promover a comercialização de computadores quânticos baseados em supercondutores.
A empresa D-Wave parecia um tiro no escuro quando lançada em 1999. Um ramo da University of British Columbia (UBC), a empresa pretendia comercializar o que na década de 1990 era um campo relativamente controverso e teórico - a computação quântica. A computação quântica é a arte de manipular entidades atômicas e explorar peculiaridades da física conhecida como “efeitos quânticos” para armazenar informações de forma mais densa e obter respostas instantaneamente de algoritmos complexos. A computação quântica é um desafio dos dois lados. Primeiro você precisa desenvolver um hardware capaz de explorar os tipos desejados de manipulação quântica. Segundo, você precisa programar o hardware com um algoritmo quântico derivado de um algoritmo clássico, como o algoritmo Page Rank de busca do Google.
Na década de 1990, nem o hardware nem o desenvolvimento de algoritmos quânticos era avançado o suficiente para ser considerado comercialmente viável. Mas a D-Wave jogou os dados e lançou uma startup na esperança de que poderia mudar isso no lado do hardware. Trabalhando em estreita colaboração com a UBC, com a Universidade de Toronto, com o laboratório de propulsão a jato da NASA e várias outras instituições de pesquisa americanas e canadenses, a D-Wave conseguiu atingir o improvável – construiu um hardware de computação quântica com potencial comercial.
Em 2007, ele executou sua primeira demonstração pública no sistema “Orion” de 16 qubits (qubit = bit quântico), que tinha uma parte especial de hardware chamado de “processador supercondutor quântico adiabático”. O processador quântico foi mais do que um co-processador no sentido de que ele não foi projetado para computação de propósitos gerais, mas para rodar algoritmos quânticos especializados carregados pelo hardware convencional.
Soluções foram geradas a partir de um processo complexo conhecido como 'recozimento quântico' (quantum annealing). Mais especificamente, o sistema da D-Wave opera através do entrelaçamento quântico - uma espécie de ligação psíquica (metaforicamente falando) entre elétrons em que espelham seus estados uns nos outros (mais especificamente, espelham uns nos outros os spins sobre seus respectivos núcleos atômicos). Para obter resultados ​​quânticos confiáveis, o sistema é resfriado a uma temperatura tão fria quanto ou mais que o espaço sideral.
Inicialmente, a alegação da D-Wave possuir o primeiro computador quântico funcional foi controversa. Contudo, os céticos foram incapazes de refutar suas reivindicações. Apoiadores como a NASA publicaram evidências dando suporte à sua possível validade.


O primeiro projeto revelado publicamente da D-Wave foi o processador “Orion” de 16 qubits


Desde o início, aplicações para a pesquisa eram evidentes. Junto com a resolução dos enigmas de Sudoku e um problema de escalonamento, um dos três demos iniciais em 2007 envolveu a busca de moléculas conhecidas em um banco de dados. Determinados algoritmos de busca de gráfico são problemas NP-completos; portanto, é impossível em um sentido convencional gerar uma solução exata na maioria dos casos.


A D-Wave iniciou a produção comercial com o processador “Orion” de 16-qubit


O objetivo é desenvolver a heurística para fornecer uma boa aproximação com base nas necessidades. Um dos objetivos centrais da D-Wave foi desenvolver um hardware comercial para obter soluções aproximadas de problemas NP-completos muito mais rápido do que é possível com hardware convencional.




Em maio de 2011, a D-Wave anunciou a disponibilidade de um processador de 128 qubit apelidado de “Rainier” (codinome: Chimera). O sistema completo tinha um preço de US$ 10 milhões de dólares. Este sistema tem uma temperatura operacional de 13,8 milikelvin (mK). A temperatura média que ocorre naturalmente no espaço sideral é de aproximadamente 2,7 K - quase 200 vezes maior do que a temperatura no interior do computador quântico.


D-Wave lançou em 2012 processadores quânticos de 128 qubits


Apesar do custo, o sistema recebeu várias compras. Os clientes incluem Universidade de Harvard, a Lockheed Martin Corp. (LMT) e a Universidade de Cornell. Enquanto o sistema mostrou resultados questionáveis ​​em termos de aceleração, ao menos desmistificou o ceticismo fornecendo indícios de que o complexo equipamento funcionou como descrito.

O computador quântico One D-Wave vendido por US$ 10 milhões de dólares


Mais tarde naquele ano, a D-Wave apresentou o Vesúvio (D-Wave Two) com 512-qubit. O design do D-Wave Two foi um salto crucial, uma vez que finalmente começou a eclipsar os computadores tradicionais em velocidade. Em alguns casos, o D-Wave Two foi centenas de vezes mais rápido quando comparado o melhor algoritmo quântico com o algoritmo clássico mais apto em hardware tradicional.

 Google e D-Wave: enredados por uma causa comum

O envolvimento da Google com a D-Wave remonta há mais de meia década. Em 2009, uma das primeiras demonstrações de protótipos iniciais da D-Wave envolveu um algoritmo quântico de busca de imagem da Google. Em maio de 2013, o Google e a D-Wave aprofundaram a parceria anunciando a abertura do  laboratório Google Quantum Artificial Intelligence. O laboratório foi co-patrocinado pela NASA e pela Universities Space Research Association (USRA). Ele mostrou que em vários indicadores, o D-Wave poderia oferecer uma aceleração de 3 a 5 ordens de magnitude maior do que dos algoritmos e hardwares convencionais.
Google usou suas caixas da D-Wave para otimizar partes do seu sistema operacional Android. Enquanto eles se recusaram a revelar certos detalhes, o Google disse que as otimizações alcançadas com o hardware quântico foram muito além do que era possível com o seu hardware convencional. Uma caixa da D-Wave poderia fazer o trabalho de otimização, em alguns casos, de todo um grande centro de dados.
        Em maio, o laboratório ofereceu uma validação crucial da tecnologia D-Wave, usando uma técnica chamada espectroscopia de tunelamento de qubit. Eles observaram uma forte evidência de entrelaçamento quântico durante uma parte chave do processo. Esta validação foi muito importante, já que algumas perguntas permaneciam se a máquina da D-Wave verdadeiramente realizava o quantum annealing. Enquanto descrições da física quântica forneceram o melhor ajuste para métricas observadas anteriormente, estudos indicam que os modelos clássicos demonstraram um comportamento semelhante. O novo trabalho do Google et al., mostrou de forma inequívoca que os mecanismos quânticos estavam trabalhando dentro das misteriosas caixas da D-Wave.

Sangue novo!

A parceria anunciada recentemente com a UCSB traz a bordo um dos maiores especialistas do mundo em supercondutores, o físico John Martinis. Professor Martinis ganhou o prêmio de Londres - um prêmio de investigação de ponta - para aplicações de supercondutores na computação quântica. Sua especialidade está no controle quântico - sistemas químicos que permitem manipulação de estados quânticos - e processamento de informação quântica - projetar algoritmos quânticos especializados (software) para analisar conjuntos de dados complexos.


O grupo do professor Martinis: Austin Fowler, Rami Barends, Professor John Martinis e Julian Kelly


Hartmut Neven, diretor de engenharia do Google relata:
Com um grupo de hardware integrado, a equipe agora será capaz de implementar e testar novos designs para otimização quântica e processadores de inferência baseados em recentes conhecimentos teóricos, bem como em nosso aprendizado a partir da arquitetura quantum annealing da D-Wave. Vamos continuar colaborando com os cientistas da D-Wave e experimentar a máquina "Vesúvio" na NASA, que será atualizada para 1000 qubit do processador "Washington".

A D-Wave revelou no ano passado que a sua concepção de qubit consiste de alças supercondutoras compostas de nióbio, com uma camada isolante de óxido de alumínio na junção. Os loops supercondutores são conhecidos como junções Josephson, em homenagem ao físico britânico Brian David Josephson que ganhou um prêmio Nobel de Física por descrever, em 1962, o comportamento deste tipo de circuito.


Circuitos supercondutores de nióbio e óxido de alumínio podem ser construídos em um substrato de silício para projetos de eletrônica quântica. [Fonte da imagem: IEEE Spectrum]


A fase e a carga do supercondutor utilizado são fundamentais para quanto tempo os qubits podem ser mantidos e que níveis de emaranhamento podem ser alcançados durante o quantum annealing. Nióbio é o supercondutor líder usado nestas junções, que também são conhecidas como junções túnel (STJ). Não há substituto para o nióbio que é o supercondutor elementar de mais alta temperatura crítica (9,26 K). Investigações sugerem que o tecnécio sob alta pressão pode alcançar 11,2 K, porém mais trabalho precisa ser feito para analisar a viabilidade da utilização de um material em uma STJ.


Nióbio elementar na forma de liga é azul e é encontrado em depósitos cristalinos. [Fonte da imagem: Wikimedia Commons]


Entretanto, professor Martinis pode focar seus conhecimentos na otimização da geometria da junção e nas técnicas de deposição para produzi-la de forma consistente e acessível. Ele deve também trabalhar para produzir um tipo especial de geometria na junção Josephson - uma junção em forma de cruz que ele chama de “XMON”. Em abril, sua equipe publicou um artigo na Nature sobre ‘xmons’ de qualidade perto de comerciais. Xmons mostram emaranhamento superior a outras geometrias da junção, mas (como afirma o artigo) está apenas começando a se aproximar da disponibilidade comercial.

Professor Martini desenvolveu uma junção Josephson melhorada que tem uma geometria em forma de cruz. Ele a chama de um qubit “XMON”. [Fonte da imagem: UCSB]


A recompensa para o Google irá, em curto prazo, ser realizada por meio de algoritmos de otimização de software que caçam pelas ineficiências em um código base. Em longo prazo, o Google pode ser capaz de abaixar os preços desses sistemas quânticos o suficiente para torná-los utilizáveis ​​como um backend de busca para o seu motor de imagens, proporcionando uma busca muito mais veloz e inteligente.


Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!