Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador coexistência supercondutividade-magnetismo. Mostrar todas as postagens
Mostrando postagens com marcador coexistência supercondutividade-magnetismo. Mostrar todas as postagens

quinta-feira, 23 de julho de 2015

A pedra de Rosetta: um potencial supercondutor de alta temperatura (A potential Rosetta Stone of high-temperature superconductivity)




Simulação numérica da heterogeneidade magnética (vermelho = magnetismo, azul = supercondutividade), causada pela substituição de 1% dos átomos de índio por átomos de cádmio no supercondutor CeCoIn5. Imagem: NJ Curro (UC Davis) e Los Alamos National Laboratory



       A Pedra de Roseta tem a mesma mensagem escrita em três diferentes idiomas que dão aos estudiosos importantes insights sobre línguas antigas. O material CeCoIn5, em virtude do seu elevado grau de pureza, permite o estudo da interação entre magnetismo, supercondutividade e a desordem em três diferentes classes de supercondutores não convencionais (cupratos, pnictídeos e férmions pesados). O sistema modelo pode ajudar os pesquisadores a decifrar os complexos fenômenos emergentes em diferentes classes de supercondutores convencionais e no desenvolvimento de uma teoria completa para a supercondutividade de alta temperatura.
       Em geral, a descoberta de novos materiais supercondutores com maiores temperaturas críticas (TC) é feita por dopagem controlada, ou seja, substituindo estrategicamente certos elementos químicos por outros em um material de partida com uma TC já elevada. Embora essa abordagem funcione, prever o comportamento dos materiais supercondutores continua a ser um grande desafio devido a várias complexidades incluindo a desordem nos materiais cristalinos.
       Uma equipe internacional de cientistas coordenada pelo Los Alamos National Lab demonstrou que o composto CeCoIn5 com incrível elevada pureza e a mais alta temperatura supercondutora de um material à base de cério, pode servir como um sistema ideal para investigar o efeito de desordem nos materiais. Flutuações magnéticas, um limitador para a supercondutividade não convencional, são observadas no CeCoIn5, mas localmente desaparecem no material dopado com uma pequena quantidade de cádmio (que substitui índio). Surpreendentemente, a temperatura de transição supercondutora do material dopado permanece quase inalterada.
       O trabalho mostra 'gotas' estáticas de magnetismo em torno dos átomos dopados, mas que não afetam a supercondutividade neste material. Espera-se que mais pesquisas sobre este material permita decifrar outros aspectos da supercondutividade não convencional que poderia abrir caminho para o desenvolvimento de uma teoria mais completa desse fenômeno.







sexta-feira, 17 de outubro de 2014

Composto tem estranha combinação de propriedades: magnetismo e supercondutividade (coexistence of 3d-ferromagnetism and superconductivity)




http://www.en.uni-muenchen.de/news/newsarchiv/2014/johrendt_superconductor.html
 O novo composto é constituído por camadas alternadas de supercondutores (seleneto de ferro) e de ferromagnéticos (hidróxido de ferro e lítio). (Fonte: Dirk Johrendt)


Pesquisadores da Ludwig Maximilians Univiversity (LMU) sintetizaram um composto supercondutor ferromagnético que é passível de modificação química, abrindo o caminho para estudos detalhados sobre essa rara combinação de propriedades físicas.
        Supercondutividade e ferromagnetismo - a forma “normal” do magnetismo, tal como encontrada em ímãs - são como água e óleo: geralmente não andam juntos. Ferromagnetos são magnéticos porque o alinhamento paralelo dos spins de elétrons adjacentes nos átomos de ferro gera um forte campo magnético interno. Quase todos os supercondutores conhecidos, por outro lado, formam pares de elétrons “anti-alinhados” que excluem as linhas do campo magnético a partir de seus interiores. Mas, químicos da LMU descobriram um novo material em que estas duas propriedades podem coexistir.
        “Sintetizamos um novo composto que é um supercondutor ferromagnético”, diz o professor Dirk Johrendt do Departamento de Química. “Este é um avanço importante, que abre novas oportunidades de pesquisa na área”, acrescenta.
Supercondutores ferromagnéticos não são desconhecidos, mas eles são extremamente raros, e quase sempre apresentam as duas propriedades simultaneamente apenas quando são esfriados a temperaturas próximas do zero absoluto (-273 ºC). “O material em camadas que sintetizamos, (Li,Fe)OH(FeSe), tem a vantagem de funcionar em temperaturas mais altas, que são mais fáceis de alcançar e manipular no laboratório”, diz Johrendt.
        O novo composto é constituído por planos alternados supercondutor (seleneto de ferro FeSe) e ferromagnético (hidróxido de ferro e lítio (Li,Fe)OH). Quando o material é resfriado, a resistividade elétrica cai a zero na camada de seleneto de ferro em temperaturas abaixo de -230 ºC, e a supercondutividade emerge. Em temperaturas um pouco mais baixas, os átomos de ferro na camada de (Li,Fe)OH se tornam ferromagnético, mas a supercondutividade persiste.
Em colaboração com físicos da Technical Univ. em Dresden e do Paul Scherrer Institute em Villingen (Suíça), os investigadores demonstraram que o campo magnético gerado pela camada (Li,Fe)OH penetra espontaneamente nas camadas supercondutoras e na ausência de campos aplicados externamente. Este novo estado da matéria é referido como uma fase de vórtice espontânea. As poucas substâncias que exibem este efeito não podem ser facilmente modificadas e requerem temperaturas ultrafrias, tornando difícil uma investigação mais detalhada.
        “Nosso novo composto pela primeira vez nos dá a oportunidade de explorar a influência da modificação química sobre a coexistência de supercondutividade e ferromagnetismo, de modo que logo será possível a realização de estudos mais extensos desse fascinante fenômeno”, conclui Johrendt.







Coexistence of 3d-Ferromagnetism and Superconductivity in [(Li1-xFex)OH](Fe1-yLiy)Se, Ursula Pachmayr et al., Angewandte Chemie. Article first published online: 7 OCT 2014, DOI: 10.1002/anie.201407756.




Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!