Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador bit quântico. Mostrar todas as postagens
Mostrando postagens com marcador bit quântico. Mostrar todas as postagens

quarta-feira, 23 de novembro de 2016

Tecnologias Quânticas: Soquete para conectar processadores quânticos

Redação do Site Inovação Tecnológica - 21/11/2016


 O soquete permite conectar inúmeros bits quânticos supercondutores, viabilizando a construção de processadores grandes. [Imagem: University of Waterloo]



Conector de qubits


Uma equipe internacional, trabalhando na Universidade de Waterloo, no Canadá, desenvolveu uma nova técnica de fiação capaz de conectar e controlar bits quânticos supercondutores, uma das técnicas de computação quântica em estágio mais avançado de desenvolvimento.
O dispositivo de conexão representa um passo importante para a construção de módulos de processamento e armazenamento que possam ser interconectados para viabilizar um computador quântico de grande porte, com um número de bits muito maior do que as demonstrações realizadas em laboratório até agora.
“O soquete quântico é um método de fiação que usa fios tridimensionais montados sobre pinos com molas para endereçar qubits individuais,” explicou Jeremy Béjanin, principal responsável pela construção do dispositivo.
“A técnica conecta a eletrônica clássica com os circuitos quânticos, e é extensível muito além dos limites atuais, de um a possivelmente alguns milhares de qubits,” completou Béjanin.


Conexão do quente ao frio


Para controlar (gravar) e medir (ler) os qubits supercondutores, são usados pulsos de micro-ondas. Esses pulsos devem ser enviados, das fontes geradoras dedicadas, até os qubits, por meio de uma rede de cabos adequados. Esses cabos devem fazer a conexão entre a eletrônica de temperatura ambiente de controle e o ambiente frio do criostato onde ficam os bits supercondutores.
O que a equipe realizou foi justamente a construção dessa rede de cabos, uma infraestrutura complexa e considerada até agora uma barreira substancial à ampliação da escala dos processadores quânticos.


Bibliografia:
Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket
Jeremy H. Béjanin, Thomas G. McConkey, John R. Rinehart, Carolyn T. Earnest, Corey Rae H. McRae, Daryoush Shiri, James D. Bateman, Yousef Rohanizadegan, B. Penava, P. Breul, S. Royak, M. Zapatka, A. G. Fowler, Matteo Mariantoni
Physical Review Applied
Vol.: 6, 044010
DOI: 10.1103/PhysRevApplied.6.044010


Fonte: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=tecnologias-quanticas-soquete-processadores-quanticos&id=010110161121&ebol=sim#.WDWhheYrKyI



quarta-feira, 29 de julho de 2015

Qubit supercondutor e esfera magnética híbrida (Superconducting qubit and magnetic sphere hybrid)




Ilustração do sistema acoplado ímã-qubit. O ímã e um qubit supercondutor são colocados com uma separação de 4 cm. O campo elétrico na cavidade interage com o qubit, enquanto o campo magnético interage com o ímã. A uma temperatura extremamente baixa de -273 °C, magnons, ou seja, quantum de flutuações do ímã, coerentemente casam com o qubit através do campo eletromagnético da cavidade. (Imagem: Yutaka Tabuchi)


Pesquisadores da Universidade de Tóquio demonstraram que é possível trocar um bit quântico, a unidade mínima de informação utilizada por computadores quânticos, entre um circuito quântico supercondutor e um quantum em um ímã chamado de magnon.
        Ímãs exercem uma força magnética produzida por um grande número de ímãs microscópicos - os spins dos elétrons - que estão alinhados na mesma orientação. Os movimentos coletivos do conjunto de spins são chamados de ondas de spin. Um magnon é um quantum de tais excitações, semelhante a um fóton como um quantum de luz, isto é, a onda eletromagnética. À temperatura ambiente os movimentos dos spins dos elétrons podem ser em grande parte afetados pelo calor. As propriedades individuais dos magnons não tinham sido estudadas a baixas temperaturas correspondentes para o ‘limite quântico’ em que desaparecem todas as flutuações de spin termicamente induzidas.
        O grupo de pesquisa do professor Yasunobu Nakamura conseguiu pela primeira vez acoplar um magnon com um fóton em uma cavidade de micro-ondas a uma temperatura ultra-baixa perto do zero absoluto (-273,14 °C). Eles observaram a interação coerente entre um magnon e um fóton, colocando uma esfera ferromagnética em uma cavidade de micro-ondas.
        O grupo de pesquisa demonstrou, além disso, acoplamento coerente de um magnon a um circuito quântico supercondutor. Este último é conhecido como um sistema de poço quântico controlável e como um dos blocos de construção mais promissores para processadores quânticos. O grupo colocou o ímã junto com o qubit supercondutor em uma cavidade e demonstrou a troca de informações entre o magnon e qubit supercondutor mediada pela cavidade de micro-ondas.
        Os resultados irão estimular a pesquisa sobre o comportamento quântico de magnons em dispositivos de spintrônica e abrir um caminho em direção a realização de interfaces quânticas e repetidores quânticos.





 

Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!