Aplicações da Supercondutividade - O skate voador da Lexus

sexta-feira, 23 de janeiro de 2015

Equipe desenvolve novos cristais supercondutores híbridos (team develops new superconducting hybrid crystals)




A interface entre o semicondutor e o metal é perfeita e estabelece os novos cristais híbridos supercondutores, que pode finalmente formar a base para os futuros supercondutores eletrônicos. Crédito: Instituto Niels Bohr


Um novo tipo de cristal de nanofios que combina materiais semicondutores e metálicos em escala atômica pode lançar as bases para futuros semicondutores eletrônicos. Pesquisadores da Universidade de Copenhagen estão por trás do avanço, que tem um grande potencial.
        O desenvolvimento e qualidade de circuitos eletrônicos extremamente pequenos são fundamentais para quão bem os computadores do futuro e outros dispositivos eletrônicos funcionarão. O novo material, composto de um semicondutor e de metal, tem uma propriedade supercondutora especial a temperaturas muito baixas e pode desempenhar um papel central no desenvolvimento da futura eletrônica.
        “Nosso novo material nasceu como um híbrido entre um nanofio semicondutor e seu contato eletrônico. Assim, inventamos uma maneira de fazer uma transição perfeita entre o nanofio e um supercondutor. O supercondutor, neste caso, é de alumínio. Há um grande potencial neste”, diz o professor Thomas Jespersen, que tem trabalhado no assunto por mais de 10 anos.


Nanofio e contato formado ao mesmo tempo

        Nanofios são fios de nanocristais extremamente finos utilizados no desenvolvimento de novos componentes eletrônicos, como transistores e células solares. Parte do desafio de trabalhar com nanofios é a criação de uma boa transição entre esses nanofios e um contacto elétrico com o mundo exterior. Até agora, pesquisadores de todo o mundo têm cultivado os nanofios e o contato separadamente. No entanto, com a nova abordagem, tanto a qualidade como a reprodutibilidade do contato melhoraram consideravelmente.


Nanofios são fios de nanocristais extremamente finos utilizados no desenvolvimento de novos componentes eletrônicos, como transistores e células solares. Crédito: Instituto Niels Bohr


“Os átomos se acomodam em uma estrutura perfeitamente ordenada no nanofio cristalino, não só no semicondutor e no metal, mas também na transição entre os dois componentes muito diferentes, o que é significativo em si mesmo. Pode-se dizer que é o limite final que se poderia imaginar para o quão perfeito uma transição entre um nanofio cristalino e um contato. Claro que isso abre muitas oportunidades de fazer novos tipos de componentes eletrônicos em nanoescala e, em particular, isto significa que podemos estudar as propriedades elétricas com uma precisão muito maior do que antes”, explica o professor Peter Krogstrup, que tem trabalhado duro no laboratório para desenvolver o contato.


Chips com bilhões de nanofios híbridos

Em sua publicação na revista Nature Materials, o grupo de pesquisa tem demonstrado esse contato perfeito e suas propriedades e também tem mostrado que eles podem fazer um chip com bilhões de nanofios híbridos idênticos de semicondutor-metal.
        “Nós pensamos que esta nova abordagem poderia finalmente formar a base para futuros eletrônicos supercondutores, e é por isso que a pesquisa em nanofios é interessante para as maiores empresas de eletrônicos”, diz Thomas Jespersen. Os pesquisadores possuem estreita colaboração em pesquisa com a Microsoft.






A supercondutividade que quer sair do frio (charge ordering in the electron-doped superconductor)




 
Redação do Site Inovação Tecnológica - 23/01/2015

 O ordenamento de cargas em cupratos é um fenômeno geral e não está particularmente associado com as cargas positivas. [Imagem: Eduardo H. da Silva Neto et al. - 10.1126/science.1256441]


        Físicos descobriram pela primeira vez um fenômeno conhecido como ordenamento de cargas, envolvido diretamente com a supercondutividade, em cristais de óxido de cobre dopados com elétrons.
        A descoberta é um passo fundamental rumo à tão sonhada obtenção da resistência elétrica zero a temperatura ambiente.

Ordenamento de cargas
        A supercondutividade ocorre quando os elétrons se juntam em pares e viajam através da rede cristalina de um material sem resistência - esse material é então chamado de supercondutor.
   Em compostos de óxido de cobre, ou cupratos, a supercondutividade é obtida em cristais que possuem elétrons de mais ou de menos.
        Quando elétrons são adicionados, o processo é chamado dopagem de elétrons; quando elétrons são removidos, o processo é chamado de dopagem de lacunas - as quasipartículas portadoras de cargas positivas.
Os físicos sabem já há alguns anos que, em óxidos de cobre dopados com lacunas, um evento chamado ordenamento - ou ordenação - de cargas compete com a supercondutividade quando as temperaturas começam se distanciar das proximidades do zero absoluto, fazendo com que não se consiga a supercondutividade fora da zona das temperaturas criogênicas.
        Em um cristal, os átomos formam redes periódicas altamente organizadas, o mesmo ocorrendo com seus elétrons. Mas, em alguns materiais, uma instabilidade faz com que alguns elétrons se reorganizem para formar novos padrões periódicos de carga, padrões que não acompanham os átomos subjacentes - isto é chamado de ordenamento de cargas.
        Em cupratos dopados com lacunas, o ordenamento de cargas perturba o delicado padrão necessário para a supercondutividade, fazendo o material oscilar entre os dois estados até que a temperatura esfrie o suficiente para que a supercondutividade vença.


Eduardo H. da Silva Neto e Andrea Damascelli no UBC's Quantum Matter Institute. Crédito: University of British Columbia.


Supercondutividade a temperatura ambiente
Agora, Eduardo da Silva Neto e seus colegas do Instituto Canadense de Pesquisas Avançadas detectaram o ordenamento de cargas em cupratos dopados com elétrons, mostrando que o fenômeno é mais geral e não está particularmente associado com as cargas positivas.
        Além disso, o fenômeno foi verificado a uma temperatura mais elevada do que aquela na qual ocorre uma fase conhecida como pseudogap - a fase de transição para a supercondutividade - contrariando o paradigma atual da área, que defende a vinculação entre o pseudogap e o ordenamento de cargas.
        Segundo a equipe, esses novos resultados sugerem uma nova direção para a compreensão da supercondutividade e abrem caminhos para uma supercondutividade a temperatura ambiente - se o ordenamento de cargas é um fenômeno mais geral, e não está ligado à baixa temperatura, pode ser possível influenciar a batalha entre ele e a supercondutividade.
        “A [importância da] descoberta do ordenamento de cargas foi enorme. Ele de fato causou um boom no campo, dando-lhe uma nova vida nos últimos anos,” comentou Eduardo. “Ele nos dá esperança de que, se for possível ajustá-lo ou manipulá-lo no sistema, a temperatura crítica para a supercondutividade pode ser mais alta.”
        Há pouco mais de um mês, outra equipe documentou a supercondutividade a temperatura ambiente em uma cerâmica - mas o fenômeno dura apenas algumas frações de segundo.


Bibliografia:
Charge ordering in the electron-doped superconductor Nd2-xCexCuO4. Eduardo H. da Silva Neto, Riccardo Comin, Feizhou He, Ronny Sutarto, Yeping Jiang, Richard L. Greene, George A. Sawatzky, Andrea Damascelli. Science, Vol.: 347 Issue 6219, pgs 282-285. DOI: 10.1126/science.1256441.






Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!