Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador applications. Mostrar todas as postagens
Mostrando postagens com marcador applications. Mostrar todas as postagens

terça-feira, 13 de agosto de 2013

Livros gratuitos (free books)




        Segue abaixo alguns links que disponibilizam livros para serem baixados gratuitamente. Os livros estão em inglês e este blog não possui direitos autorais de nenhum deles. Nos limitamos apenas a divulgar os links! Para acessá-los, basta clicar nas imagens ou nos títulos.


 






 

 

 

Superconductors - Materials, Properties and Applications


http://www.intechopen.com/books/superconductors-materials-properties-and-applications

 

 

Superconductors - Properties, Technology, and Applications

 
http://www.intechopen.com/books/superconductors-properties-technology-and-applications

 

sexta-feira, 2 de agosto de 2013

Aplicações dos supercondutores (applications of superconductors)



       
       Segue abaixo uma pequena lista contendo algumas das mais importantes aplicações práticas dos sistemas supercondutores. O objetivo desse post é fornecer apenas uma ideia geral sobre onde são empregados estes materiais. Para uma visão mais profunda, vejas os links nas laterais desse blog e encontre livros para download gratuito como, por exemplo, Applications of High-Tc Superconductivity. Obs.: clicando nos links e nas imagens, a página será direcionada para a fonte das informações. Veja cada link e enriqueça ainda mais seus conhecimentos.





        
             Componentes SQUID                              SQUID

O SQUID é o equipamento mais sensível para a detecção de campos magnéticos, capaz de medir intensidades da ordem de 10–15 T. O campo da terra é em torno de 10–6 T e o do cérebro humano é por volta de 10–13 T. Em geral, o SQUID é usado para realizar medidas magnéticas de várias espécies de materiais, sendo por isso frequentemente denominado de magnetômetro SQUID. Sua capacidade de detecção é proporcionada pelas famosas junções Josephson.


Esquema básico de uma junção Josephson

Brian David Josephson previu que seria possível o tunelamento de pares de Cooper entre dois supercondutores separados por uma distância menor que 10 Å, na ausência de uma voltagem externa. A confirmação experimental de sua previsão veio no ano de 1963 por Anderson e Rowell. Uma junção Josephson é formada por dois supercondutores fracamente acoplados através de uma fina película isolante. A película pode ser feita a partir da oxidação do filme da base ou pela deposição de camadas adicionais de um metal oxidado, de um semicondutor ou de um metal normal. Quando utilizado material isolante, a espessura da barreira é de alguns nanômetros. Para uma barreira feita de material semicondutor ou normal, ela possui espessura de 10 a 100 vezes maior.
No SQUID, a corrente que entra no dispositivo é dividida em duas componentes que atravessam as duas JJ na forma de correntes de pares de Cooper. Quando o SQUID é submetido a um campo magnético, cada corrente varia periodicamente, passando por máximos consecutivos à medida que o fluxo magnético passa por múltiplos do quantum fundamental, . Dessa maneira, por meio de um circuito contador, pode-se determinar o número de máximos que a corrente atravessa e conhecer assim o fluxo magnético final.
Outra aplicação amplamente divulgada do SQUID é a magnetoencefalografia. Uma técnica que permite mapear o campo magnético gerado pela atividade cerebral, através de sensores que atuam em conjunto com um SQUID.





Para atingir sua temperatura ideal de condução, o cabo supercondutor é resfriado com nitrogênio líquido.[Imagem: Nexans]

        Apesar de alguns materiais apresentaram altas temperaturas críticas e elevadas densidades de corrente, um grande desafio está na confecção de fios. Os cupratos ainda são os campeões da TC, mas por serem materiais cerâmicos, ainda é impraticável substituir os comuns fios de cobre por supercondutores. Apesar disso, várias pesquisas estão dando ótimos resultados, como é o caso do maior cabo supercondutor do mundo. Instalado na Alemanha, unindo duas subestações na cidade de Ruhr e projetado para suportar uma carga de 40 MW (megawatts), o cabo será formado por seções concêntricas operando a 10.000 volts. Segundo engenheiros do Instituto de Tecnologia Karlsruhe, que projetaram o cabo, ele será o primeiro a incorporar um sistema de proteção contra sobrecargas, com limitador de corrente. O cabo supercondutor terá 1 km de extensão - para se ter uma ideia, o recorde mundial de intensidade de corrente elétrica foi batido com um cabo supercondutor de 30 metros de comprimento. (Fonte: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=maior-cabo-supercondutor-mundo)


Sistema de cabos supercondutores instalados em Nova York
Imagem da American Superconductor



Espectrômetro RMN da Oxford

        Esta técnica se baseia em gerar um campo magnético e orientar o spin dos núcleos (ou magnetização dos núcleos), após isto são gerados pulsos magnéticos que irão perturbar a magnetização dos spins e é medido o tempo que o spin demora para voltar à magnetização inicial. A intensidade do campo magnético necessária para orientar o núcleo dos átomos é obtida com o uso de supercondutores. No interior do equipamento, materiais supercondutores imersos em hélio líquido permitem gerar campos magnéticos altíssimos pela passagem de corrente elétrica.

LHC: Large Hadron Collider – Grande Colisor de Hádrons


Anel do LHC
       
        O Grande Colisor de Hádrons (LHC) do CentroEuropeu de Pesquisas Nucleares (CERN) é o maior acelerador de partículas do mundo. O LHC consiste de um anel de 27 km de magnetos supercondutores com uma série de estruturas de aceleração para aumentar a energia das partículas ao longo do caminho. O enorme campo magnético necessário para acelerar as partículas a altíssimas velocidades próximas à da luz é gerado a partir dos supercondutores.

Outras aplicações

Limitadores de corrente



Motor


MagLev – trens de levitação magnética







Separador magnético industrial



Pesquisas em fusão nuclear



        Ainda há muitas outras aplicações dos materiais supercondutores que não foram mencionadas aqui. A maioria delas não faz parte do cotidiano do cidadão comum, como a computação quântica, por exemplo. É provável que nos próximos 20 anos a supercondutividade se aproxime mais da vida cotidiana e traga maiores benefícios pra humanidade. Espero e torço para que pesquisadores brasileiros tenham grande contribuição nesta jornada.

Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!