Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador matéria de vórtices em supercondutores. Mostrar todas as postagens
Mostrando postagens com marcador matéria de vórtices em supercondutores. Mostrar todas as postagens

terça-feira, 13 de dezembro de 2016

Físicos manipulam vórtices de Abrikosov



Os vórtices distribuídos aleatoriamente na amostra supercondutora (esquerda) foram reposicionados em um padrão formando as letras “AV”, que significa ‘Abrikosov vórtices’ (à direita). Crédito: Instituto de Física e Tecnologia de Moscou (MIPT)



Um grupo de nanofotônica liderado pelo Prof. Brahim Lounis da Universidade de Bordeaux, incluindo cientistas do MIPT, realizou uma experiência única envolvendo a manipulação óptica de vórtices individuais de Abrikosov em um supercondutor. No artigo publicado na Nature Communications, os cientistas mencionam a possibilidade de projetar novas unidades lógicas baseadas em princípios quânticos para uso em supercomputadores.
Quando um material transita para o estado supercondutor, os campos de fluxo magnético são expulsos do seu volume. Um supercondutor tem todas as linhas de campo magnético ejetadas do seu interior ou permite a penetração parcial do campo magnético. O fenômeno da penetração parcial foi explicado em 1957 por Alexei Abrikosov, pelo qual recebeu o Prêmio Nobel de Física em 2003. Um material que não exibe uma expulsão completa do campo magnético é referido como um supercondutor tipo II. Abrikosov também demonstrou que esses supercondutores só podem ser penetrados por unidades de fluxo magnético discreto, um quantum de fluxo magnético de cada vez. Como o campo dentro de um supercondutor cresce mais forte, dá origem aos loops de corrente cilíndrica conhecidos como vórtices Abrikosov.
“Os supercondutores dtipo II são usados ​​em várias aplicações, desde a medicina até a energia e outras indústrias, e suas propriedades são determinadas pela ‘matéria de vórtice’, o que torna a pesquisa de vórtices e encontrar maneiras de manipulá-los muito importantes para a física moderna”, diz Ivan Veshchunov, um dos autores do estudo e pesquisador do Laboratório de Fenômenos Quânticos Topológicos em Sistemas Supercondutores do MIPT.
Para manipular os vórtices de Abrikosov, os cientistas usaram um feixe de laser focalizado. Este tipo de controle óptico de vórtice é possível pela tendência dos vórtices serem atraídos para as regiões de temperatura mais elevada num supercondutor (neste caso, um filme de nióbio resfriado a -268ºC). Os hotspots (‘pontos quentes’) necessários podem ser criados pelo aquecimento do material com um laser. No entanto, é crucial definir a potência correta do laser, uma vez que o aquecimento do material destrói suas propriedades supercondutoras.
Como os vórtices atuam como quanta de fluxo magnético, eles podem ser usados ​​para moldar o perfil de fluxo magnético geral, permitindo que os físicos realizem várias experiências com supercondutores. Enquanto uma rede de vórtices triangular ocorre naturalmente em certos campos magnéticos, outros tipos de redes (e dispositivos como lentes de vórtice) podem ser criados movendo vórtices ao redor.
O método de manipulação de vórtices no estudo pode ser usado na computação quântica para o desenvolvimento de elementos lógicos quânticos de fluxo único (RSFQ), controlados opticamente. Esta tecnologia é vista como promissora para o projeto de memória super-rápida para computadores quânticos. Os elementos lógicos baseados em RSFQ já são usados ​​em conversores digital-analógico e analógico-digital, magnetômetros de alta precisão e células de memória. Vários protótipos de computadores baseados nessa tecnologia foram desenvolvidos, incluindo o FLUX-1 projetado por uma equipe de engenheiros dos EUA. No entanto, os elementos lógicos RSFQ nestes computadores são em grande parte controlados por impulsos elétricos. A lógica controlada opticamente é uma tendência emergente nos sistemas supercondutores.
As experiências realizadas pelos cientistas poderiam ser aplicadas em pesquisas futuras sobre os vórtices de Abrikosov. Os físicos ainda têm de investigar os detalhes de como o aumento da temperatura age para ‘soltar’ os vórtices de seus locais e colocá-los em movimento. Mais pesquisas sobre a dinâmica de vórtices em estruturas de Abrikosov provavelmente seguirão. Esta linha de pesquisa é fundamental para a compreensão da física dos supercondutores, bem como para avaliar as perspectivas de novos tipos de componentes de microeletrônica.





domingo, 28 de setembro de 2014

Matéria de Vórtices em Supercondutores









Excelente seminário do professor Clécio Clemente do Departamento de Física da UFPE. São apresentados conceitos básicos da supercondutividade, da dinâmica de vórtices e resultados de pesquisa desenvolvida sobre a matéria de vórtices.
        Para mais informações sobre o professor Clécio Clemente, acesse: http://www.ufpe.br/df/index.php?option=com_content&view=article&id=295%3Aclecio-clemente-de-souza-silva&catid=31&Itemid=220




Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!