Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador tokamak. Mostrar todas as postagens
Mostrando postagens com marcador tokamak. Mostrar todas as postagens

terça-feira, 1 de setembro de 2015

Uma pequena e eficiente planta de fusão (A small, modular, efficient fusion plant)



Uma vista do reator ARC. Graças a poderosa nova tecnologia do ímã, o (muito menor) reator ARC é mais barato e deverá entregar a mesma potência de um reator muito maior. Ilustração: MIT ARC


       É uma velha piada que muitos cientistas de fusão estão cansados de ouvir: usinas práticas de fusão nuclear estão há apenas 30 anos de distância - e sempre estarão.
       Mas agora, finalmente, a piada já não pode ser verdade: avanços na tecnologia de ímã permitiram pesquisadores do MIT propor um novo e compacto reator de fusão Tokamak - e é algo que pode ser feito em menos de uma década, dizem eles. A era da energia de fusão que pode oferecer uma fonte quase inesgotável de energia, pode estar chegando perto.
       Os pesquisadores usaram fitas supercondutoras com materiais de alta temperatura crítica disponíveis comercialmente, a fim de produzir bobinas capazes de gerar altos campos magnéticos.
       O campo magnético mais forte faz com que seja possível produzir o confinamento magnético do plasma superquente - isto é, o material de uma reação de fusão - mas num dispositivo muito menor do que os anteriormente imaginados. A redução no tamanho, por sua vez, faz todo o sistema mais barato e mais rápido de construir, e também permite algumas novas funcionalidades engenhosas no projeto da usina.

Usina protótipo

O novo reator é projetado para a pesquisa básica sobre fusão e também como uma usina protótipo que poderia produzir energia significativa. O conceito básico do reator e seus elementos associados são baseados em princípios bem testados e comprovados, desenvolvidos ao longo de décadas de pesquisa no MIT e em todo o mundo, diz a equipe.
       “O campo magnético muito maior”, diz Brandon Sörbom, “permite atingir um desempenho muito maior”.
       Fusão é a mesma reação nuclear que alimenta o sol, onde pares de átomos de hidrogênio formam o gás hélio resultando em enormes liberações de energia. A parte mais difícil é confinar o plasma superquente - uma forma de gás eletricamente carregado - enquanto se aquece a temperaturas mais altas do que os núcleos de estrelas. Este é o lugar onde os campos magnéticos são tão importantes, eles efetivamente prender o calor e as partículas no centro quente do dispositivo.
       Enquanto a maioria das características de um sistema tende a variar proporcionalmente às mudanças nas dimensões, o efeito das variações no campo magnético em reações de fusão é muito mais extremo: o ​​aumento na capacidade da fusão varia de acordo com a quarta potência do aumento no campo magnético. Assim, a duplicação do campo iria produzir um aumento de 16 vezes na potência da fusão. “Qualquer aumento do campo magnético resulta em uma grande vitória”, diz Sörbom.

Dez vezes mais capacidade

       Enquanto os novos supercondutores não produzem a duplicação da intensidade do campo, eles são fortes o suficiente para aumentar o poder de fusão por um fator de 10 comparado à tecnologia de supercondutores padrão, diz Sörbom. Esta melhoria dramática leva a um grande potencial de melhorias no reator.
       O mais poderoso reator de fusão é o ITER que está em construção na França, deverá custar cerca de US $ 40 bilhões. Sörbom e a equipe do MIT estimam que o novo projeto com metade do diâmetro do ITER (concebido antes dos novos supercondutores tornarem-se disponível), teria a mesma capacidade com uma fração do custo e em um tempo de construção mais curto.
       Mas, apesar da diferença de tamanho e força do campo magnético, o reator proposto, chamado ARC, é baseado “exatamente na mesma física”, como o ITER, afirma Dennis Whyte, professor de engenharia nuclear. “Nós não estamos extrapolando nenhum regime novinho em folha”, acrescenta.
       Outro avanço chave no novo design é um método para a remoção do núcleo energético de fusão a partir do reator em forma de anel, sem ter de desmontar o dispositivo inteiro. Isso faz com que seja adequado para a investigação que visa melhorar ainda mais o sistema usando diferentes materiais ou modelos para ajustar o desempenho.
       Além disso, assim como no ITER, os novos ímãs supercondutores permitiriam ao reator operar de maneira sustentada, produzindo uma saída de potência constante, ao contrário dos reatores experimentais atuais, que só podem funcionar durante alguns segundos de cada vez, sem sobreaquecimento nas bobinas de cobre.

Proteção líquida

Outra vantagem importante é que a maioria dos materiais sólidos de cobertura utilizados para rodear a câmara de fusão em tais reatores são substituídos por um material líquido que pode ser facilmente distribuído e substituído, eliminando a necessidade de procedimentos dispendiosos de substituição como os materiais que degradam ao longo do tempo.
       “É um ambiente extremamente severo para materiais sólidos”, diz Whyte, então substituir os materiais com um líquido poderia ser uma grande vantagem.
       Agora, como projetado, o reator deve ser capaz de produzir cerca de três vezes mais eletricidade do que é necessário para mantê-lo funcionando, mas o projeto provavelmente poderia ser melhorado para aumentar essa proporção para cerca de cinco ou seis vezes, diz Sörbom. Até agora, nenhum reator de fusão produziu tanta energia quanto ele consome, de modo que este tipo de produção de energia líquida seria um grande avanço na tecnologia da fusão, diz a equipe.
       O projeto poderia produzir um reator que iria fornecer eletricidade para cerca de 100.000 pessoas, dizem eles. Aparelhos de complexidade e dimensões semelhantes serão construídos dentro de cerca de cinco anos, dizem eles.
       “A energia de fusão será a fonte de energia elétrica mais importante da Terra no século 22, mas precisamos disso muito mais cedo para evitar o catastrófico aquecimento global”, diz David Kingham, CEO da Tokamak Energy do Reino Unido, que não estava relacionada com esta pesquisa. “Este trabalho mostra uma boa maneira de fazer progressos mais rápidos”, diz ele.
       Sobre a pesquisa do MIT, Kingham diz: “O trabalho é de qualidade excepcional. O próximo passo seria refinar o projeto e trabalhar mais detalhes de engenharia, mas o trabalho já deve chamar a atenção dos políticos, filantropos e investidores privados”.






terça-feira, 3 de setembro de 2013

A sorte está lançada: Reator de fusão nuclear é selado





Redação do Site Inovação Tecnológica - 30/08/2013


Vista geral da construção do reator de fusão tipo estelarator, antes de seu fechamento final. [Imagem: IPP]

Esteralator
Enquanto o reator de fusão nuclear do ITER recebe o sinal verde para o início de sua montagem, o Wendelstein 7-X, na Alemanha, dá um passo ainda mais significativo.
Acabam de ser colocadas as últimas coberturas do complicado reator de fusão, selando definitivamente o invólucro onde os cientistas tentarão recriar o processo de geração de energia das estrelas.
Ao contrário do reator do ITER, que é do tipo tokamak, o reator do Wendelstein 7-X é do estelarator (stellarator).
Um tokamak é alimentado por uma corrente de plasma. Essa corrente fornece uma parte do campo magnético responsável por isolar o próprio plasma das paredes do reator - o grande desafio é evitar as instabilidades do plasma circulante pelo torus.
Um reator do tipo estelarator não tem corrente, eliminando de pronto o problema das instabilidades do plasma.
Mas o projeto tem seus próprios desafios, o que justificou a construção do Wendelstein 7-X, que, da mesma forma que o ITER, será um reator de pesquisas, para demonstrar a viabilidade do conceito.
Se tudo correr bem, ele entrará em funcionamento em 2014.

O anel retorcido do Wendelstein 7-X é formado por cinco módulos estruturalmente idênticos. [Imagem: IPP]

Janelas fechadas
O anel retorcido do Wendelstein7-X é formado por cinco módulos estruturalmente idênticos.
Cada uma das cinco seções do canal de plasma, assim como as 14 bobinas magnéticas supercondutoras, foram conectadas e revestidas por um invólucro externo de aço pesando 120 toneladas.
Cada um dos cinco módulos tem diversas "janelas", onde são conectados instrumentos de medição, bombas e mecanismos de resfriamento.
Com a soldagem da janela número 254, agora o reator de fusão, assim como a sorte do que ocorrerá lá dentro, estão totalmente selados.

Fonte: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=reator-fusao-nuclear-selado&id=010115130830&ebol=sim

Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!