Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador alta temperatura crítica. Mostrar todas as postagens
Mostrando postagens com marcador alta temperatura crítica. Mostrar todas as postagens

quinta-feira, 15 de julho de 2021

A pressão é desligada e a supercondutividade de alta temperatura continua

 

por Nicole Johnson, University of Houston

 Paul Chu (à direita) é o diretor fundador e cientista chefe do Texas Center for Superconductivity at the University of Houston (TcSUH). Liangzi Deng (à esquerda) é professor assistente. Crédito: Universidade de Houston.

Paul Chu (à direita) é o Diretor Fundador e Cientista Chefe do Texas Center for Superconductivity at the University of Houston (TcSUH). Liangzi Deng (à esquerda) é professor assistente de pesquisa física no TcSUH. Crédito: Universidade de Houston.

 

O diretor do Texas Center for Superconductivity, Paul Chu, juntamente com sua equipe, desenvolveu uma técnica que consiste em preservar a fase supercondutora de alta temperatura mesmo após a remoção da pressão que induziu o surgimento da fase.

Pengcheng Dai, professor de física e astronomia da Rice University, e seu grupo, contribuíram para demonstrar com sucesso a possibilidade da técnica de arrefecimento por pressão em um modelo supercondutor de alta temperatura , o seleneto de ferro (FeSe). Os resultados foram publicados na revista Proceedings of the National Academy of Sciences .

“Nós derivamos o método de extinção de pressão da formação do diamante artificial a partir da grafite por Francis Bundy e de outros compostos metaestáveis”, disse Chu. “O grafite se transforma em diamante quando submetido a alta pressão em altas temperaturas. O subsequente resfriamento rápido da pressão, ou remoção da pressão, deixa a fase de diamante intacta sem pressão.”

Chu e sua equipe aplicaram esse mesmo conceito a um material supercondutor com resultados promissores.

“O seleneto de ferro é considerado um supercondutor simples de alta temperatura com uma Tc = 9K à pressão ambiente”, disse Chu.

“Quando aplicamos pressão, a Tc aumentou para ~ 40K, mais do que quadruplicando o valor, permitindo-nos distinguir inequivocamente a fase PQ (pressure-quench) supercondutora da fase não-PQ original. Em seguida, tentamos conservar a fase supercondutora de alta Tc  após a remoção da pressão usando o método PQ, e descobrimos que podemos”.

A conquista do Dr. Chu e seus colegas leva os cientistas um passo mais perto de realizar o sonho da supercondutividade à temperatura e pressão ambiente, recentemente relatada em hidretos apenas sob pressão extremamente alta.

Para operar um dispositivo supercondutor, é necessário resfriá-lo abaixo de sua temperatura crítica (Tc), o que requer energia. Quanto maior for a Tc, menos energia será necessária. Portanto, aumentar a Tc até a temperatura ambiente tem sido a força motriz dos cientistas na pesquisa da supercondutividade desde sua descoberta.

Desafiando a crença de que a Tc não poderia exceder 30K, Paul Chu e colegas descobriram em 1987 a supercondutividade com uma Tc = 93K em uma nova família de compostos. A Tc tem sido continuamente elevada a 164K por Paul Chu e outros grupos de cientistas. Recentemente, uma Tc de 287K foi obtida por Dias e colaboradores da Universidade de Rochester no sistema sulfeto de hidrogênio-carbono sob 267 gigapascal (GPa).

“Nosso método permite fazer o material supercondutor com maior Tc sem pressão. Não há razão para que a técnica não possa ser aplicada igualmente aos hidretos que mostraram sinais de supercondutividade com uma Tc próxima da temperatura ambiente”.


Fonte: https://phys.org/news/2021-07-pressure-high-temperature-superconductivity.html

 

Mais informações:

Liangzi Deng et al, Pressure-induced high-temperature superconductivity retained without pressure in FeSe single crystals, Proceedings of the National Academy of Sciences (2021). DOI: 10.1073/pnas.2108938118.


sábado, 24 de outubro de 2020

Pesquisadores sintetizam material que é supercondutor em temperatura ambiente

 




 

Comprimindo sólidos moleculares simples como o hidrogênio a pressões extremamente altas, engenheiros e físicos da Universidade de Rochester criaram, pela primeira vez, um material que é supercondutor a temperatura ambiente.

       Ao estabelecer o novo recorde, Ranga Dias e sua equipe combinaram hidrogênio, carbono e enxofre para sintetizar fotoquimicamente um simples hidreto em uma célula de bigorna de diamante, um dispositivo de pesquisa usado para examinar quantidades minúsculas de materiais sob pressão extraordinariamente alta. O hidreto exibiu a supercondutividade em torno de 58°F a uma pressão de cerca de 39 milhões de PSI.

       A quantidade de material supercondutor criado pelas células de bigorna diamante é medida em picolitros — do tamanho de uma única partícula de jato de tinta.

       O próximo desafio, segundo Dias, é encontrar maneiras de criar materiais supercondutores em temperatura ambiente a pressões mais baixas, para que sejam viáveis de produzir em grande volume. Em comparação com os milhões de quilos de pressão criados nas células de bigorna de diamantes, a pressão atmosférica da Terra no nível do mar é de cerca de 15 PSI.

Poderosos eletroímãs supercondutores já são componentes críticos de trens maglev, ressonância magnética (MRI) e máquinas de ressonância magnética nuclear (RMN), aceleradores de partículas e outras tecnologias avançadas, incluindo supercomputadores quânticos.




       Mas os materiais supercondutores usados nos dispositivos funcionam apenas em temperaturas extremamente baixas, mais do que qualquer temperatura natural na Terra. Essa restrição torna cara a sua manutenção e muito caro para outras aplicações potenciais. “O custo para manter esses materiais em temperaturas criogênicas é tão alto que você não pode obter o benefício total deles”, diz Dias.

       Anteriormente, a maior temperatura para um material supercondutor foi alcançada no ano passado no laboratório de Mikhail Eremets do Instituto Max Planck, e no grupo Russell Hemley na Universidade de Illinois em Chicago.

       Nos últimos anos os pesquisadores exploraram óxidos de cobre e compostos à base de ferro como candidatos a supercondutores de alta temperatura. No entanto, o hidrogênio oferece um promissor bloco de construção.

       “Para ter um supercondutor de alta temperatura, você quer ligações fortes e elementos leves. Esses são dois critérios básicos”, afirma Dias. “O hidrogênio é o material mais leve, e a ligação de hidrogênio é uma das mais fortes. Teoricamente, o hidrogênio metálico sólido possui alta temperatura de Debye e forte acoplamento elétron-fônon, necessário para a supercondutividade a temperatura ambiente”diz Dias.

       No entanto, pressões extraordinariamente altas são exigidas para obter hidrogênio puro no estado metálico. Visando contornar essa dificuldade, Dias e colaboradores usam como alternativa materiais ricos em hidrogênio que imitam a fase de supercondutora do hidrogênio puro, e podem ser metalizados a pressões mais baixas.

       Primeiro eles combinaram ítrio e hidrogênio. O superhidreto de ítrio resultante exibiu supercondutividade a uma temperatura recorde de 12°F a uma pressão de cerca de 26 milhões de libras por polegada quadrada.

       Em seguida, o laboratório explorou materiais orgânicos covalentes ricos em hidrogênio. Esse trabalho resultou no hidreto carbonáceo de enxofre. “A presença do carbono é de importância equivalente aqui”, relatam os pesquisadores. Mais ‘ajustes composicionais’ dessa combinação de elementos podem ser a chave para alcançar a supercondutividade a temperaturas ainda mais altas, acrescentam.

 

 

Fonte: https://phys.org/news/2020-10-room-temperature-superconducting-material.html

 

 

Mais informações: https://www.nature.com/articles/s41586-020-2801-z.

 


quarta-feira, 20 de janeiro de 2016

Determinando a temperatura crítica de um supercondutor de alta temperatura (Determining the Superconducting Transition Temperature of High Temperature Superconductor Tape)


Os detalhes de um experimento para medir a temperatura crítica (TC) de supercondutores são fornecidos neste artigo. Para o experimento, o sistema criogênico OptistatDry da Oxford Instruments foi equipado com uma opção de amostra desmontável e integrado com um amplificador de frequência média da Zurique Instruments. O experimento demonstrou que a plataforma criogênica exibe adaptabilidade, controlabilidade e capacidade para resolver pequenos sinais enquanto evita o ruído de fundo.
O arranjo experimental é mostrado na figura 1 a seguir.



Figura 1. Setup do amplificador MFLI e do criostato OptistatDry.


Um suporte de cobre foi usado para montar a fita de 500 milímetros de YBCO (Figura 2).



Figura 2. Bobina de YBCO montada sobre o disco de amostra


Derivações de tensão foram aplicadas sobre a fita. Terminais de alimentação foram adicionados na extremidade da fita para passar a corrente de excitação. Um sensor e um aquecedor foram montados no disco da amostra.
     O controle MercuryiTC do sistema permite varreduras simultâneas do trocador de calor e temperaturas da amostra em taxas específicas que são escolhidas pelo usuário. A varredura da temperatura foi realizada em 0.1, 0.05 e 0.01 K/min sobre a região de transição, a fim de obter a temperatura de transição supercondutora do YBCO. O MFLI desempenhou um papel duplo neste experimento. Foi um gerador de função de baixa distorção e um amplificador que recuperou pequenas respostas demoduladas. O sinal de entrada foi monitorado em tempo real com a ajuda do MFLI.
Embora o sistema OptistatDry seja personalizado para lidar com pequenas amostras, o dispositivo pode ser estendido para trabalhar com amostras maiores. Como a Figura 3 mostra, a transição supercondutora (Tc) ocorre ao longo de um intervalo de temperatura devido ao gradiente de temperatura que existe entre a bobina de YBCO relativamente grande (diâmetro de 40 milímetros). A estrutura granular do YBCO é exposta pelas varreduras rápidas de temperatura. Quando a temperatura de loop do YBCO aumenta, os domínios parecem mudar seu estado em grupos de avalanche.



Figura 3. Propagação do estado supercondutor através do YBCO quando a amostra é aquecida a diferentes taxas de aquecimento. A menor tensão de excitação aplicad foi pela 100 mK/min.


Para obter mais controle e resolução da transição, uma varredura gradual da temperatura é necessária, que pode ser feita com exatidão e precisão pelo controlador MercuryiTC.
     Determinar a Tc de um material usando o método de medição de 4 fios não é ideal, mas o experimento teve como objetivo ilustrar as características de adaptabilidade e de medição do OptistatDry integrado ao sistema MFLI. Uma vez que teria sido um desafio resolver os pequenos sinais com uma técnica resistividade DC, uma técnica CA com um amplificador MFLI foi usada em vez disso. Esta técnica foi capaz de chegar a uma base de ruído de aproximadamente 12μV. Uma frequência de medida ideal de 117 Hz foi escolhida de forma a minimizar componentes harmônicas mais altas e evitar qualquer grande mudança de fase entre os sinais de excitação e de medição. A distorção harmônica e a entrada MFLI pode ser medida simultaneamente usando um multi-demodulador. Este arranjo permitiu o uso do mesmo método de medição para determinar se a corrente de excitação através da amostra de YBCO foi 104  mA a uma temperatura de 91 K. A resistividade estado normal da fita de comprimento foi 3x10-8 Ωm.
     O experimento demonstrou a transição supercondutora do YBCO em diferentes taxas de aquecimento. Medições diferenciais de várias propriedades físicas podem ser realizadas num amplo intervalo de temperaturas e a modulação de condução com base na configuração criogênica e instrumentação. Em adição, multi-desmodulador e informação de fase em frequências harmônicas superiores ou múltiplas pode ser obtida simultaneamente, sem alterar qualquer hardware. Isso permite maior flexibilidade em projetar experimentos de baixa temperatura.




sábado, 16 de maio de 2015

Explicado o segredo do supercondutor H2S (Secret of record-breaking superconductor explained)



A superfície de Fermi no sulfeto de hidrogênio sob 200 GPa de pressão. (Cortesia: Ion Errea, Matteo Calandra et al.)


A supercondutividade convencional pode ocorrer em temperaturas muito mais altas do que o esperado, de acordo com cálculos feitos por uma equipe internacional de físicos liderada por Matteo Calandra do Instituto IMPMC em Paris. Os pesquisadores desenvolveram um modelo teórico para explicar o recorde da supercondutividade relatada no ano passado para o sulfeto de hidrogênio (H2S), o qual a equipe atribui a interações relativamente simples semelhantes aquelas que ocorrem em supercondutores convencionais de baixa temperatura.
        Supercondutores de baixa temperatura são bem descritos pela teoria BCS, em que interações com fônons levam ao emparelhamento de elétrons em pares de Cooper que viajam através do material sem resistência. A maior temperatura crítica (TC) para esta classe de supercondutores é apenas 39 K (para o MgB2).
        Apesar da grande quantidade de pesquisa feita sobre supercondutores de alta temperatura, grande parte da física subjacente à sua supercondutividade permanece desconhecida. Esse mistério foi aprofundado no final do ano passado quando Mikhail Eremets e colaboradores descobriram que quando submetido a uma pressão extremamente alta (200 GPa), o H2S tem uma TC de 190 K (Veja aqui). Enquanto a TC de supercondutores de alta temperatura pode ser aumentada pela aplicação de pressão, o H2S parece destinado a tornar-se o novo recordista se a medida for confirmada.
        A coisa estranha sobre o H2S é que - ao contrário de outros supercondutores de alta temperatura – ele não existe em um estado magnético, e, portanto, se assemelha mais a um supercondutor convencional. Essa observação levou Calandra e colegas a usar a teoria BCS como ponto de partida para os seus cálculos.
        As interações entre os elétrons e as vibrações dos átomos de hidrogênio são a chave para a compreensão da supercondutividade no H2S. O hidrogênio tem uma massa muito pequena e vibra em frequências relativamente elevadas. Estes modos de alta frequência interagem fortemente com elétrons e deve resultar em um supercondutor com uma TC muito alta. Quando Calandra e colegas utilizaram a teoria BCS para calcular a TC do H2S em alta pressão, eles obtiveram um valor de 250 K - muito maior do que o observado 190 K.
        A equipe acredita que a TC real é um pouco menor, porque a teoria BCS assume que os átomos vibram no material como osciladores harmônicos simples. No entanto, átomos leves como hidrogênio sofrem oscilações anarmônicas mais complicadas, e isso pode enfraquecer significativamente as interações que criam os pares de Cooper. Depois de levar em conta os efeitos anarmônicos em seus cálculos, os pesquisadores calcularam uma TC muito mais realista de 194 K.

Aumentando a pressão
        Os cálculos também sugerem que a interação entre os efeitos anarmônicos e outras propriedades do material resulta numa TC constante entre 200-250 GPa. Observar esse efeito no laboratório seria um bom teste para os cálculos, Calandra diz não ter conhecimento de quaisquer medições acima de 200 GPa. Ele ressalta que a experiência de 200 GPa foi extremamente difícil de fazer, e que Eremets e colegas são provavelmente os únicos pesquisadores capazes de estudar o H2S a pressões mais elevadas.
        “A descoberta de Eremets e nosso trabalho teórico fundamentam o caminho para a busca da supercondutividade de alta TC em hidretos e materiais à base de hidrogênio em geral”, diz Calandra. “Nesta classe de materiais deve ser possível encontrar supercondutores com uma TC da mesma ordem (ou superior) do que o H2S a alta pressão”, acrescenta.
        Elisabeth Nicol da Universidade de Guelph no Canadá está entusiasmada com os resultados. “O surpreendente é que podemos ter um supercondutor de elétron-fônon que opera a 190 K”, diz ela. Nicol, que não estava envolvido nos cálculos, acrescenta que “Embora tecnicamente a teoria da supercondutividade em si não estabeleça um limite na TC, o consenso foi que os supercondutores de elétron-fônon têm baixa TC. Claramente, estamos aprendendo que ainda há possibilidades para a supercondutividade convencional”.
        O trabalho está publicado na Physical Review Letters.






segunda-feira, 30 de março de 2015

Estudo propõe nova maneira de medir flutuações em supercondutores (Study proposes new way to measure superconducting fluctuations)



Cientistas do Argonne propõe evidência teórica para uma nova flutuação em supercondutores, o que pode levar a uma forma de medir a temperatura exata em que começa supercondutividade e lançar luz sobre as propriedades mal compreendidas de materiais supercondutores acima dessa temperatura. Acima: picos são visíveis a temperaturas próximas de TC, a temperatura na qual inicia a supercondutividade. Crédito:. Alexey Galda


Supercondutores são um quebra-cabeça antigo em física, e se tornou ainda mais tentador devido às aplicações tecnológicas muito valiosas destes materiais. A eletricidade está sendo deperdiçada ao seu redor; pouquíssimos sistemas elétricos usam a capacidade de forma eficiente, eles sempre perdem energia como calor que você sente quando o seu laptop ou telefone fica quente. Isso porque até mesmo os nossos melhores condutores, como o cobre, sempre perde eletricidade para a resistência. Supercondutores não. Quando resfriados a temperatura de funcionamento, nunca perdem a eletricidade.
Este é o tipo de propriedade única que pode estimular completamente novos campos de invenção, e eles possuem ressonâncias magnéticas, torres de telefonia celular e Maglev, todos usando supercondutores. Mas eles não estão presentes em cada linha de transmissão devido a um grave problema logístico: a sua temperatura de funcionamento é -270 °F ou menos, por isso têm de ser resfriados com hélio ou nitrogênio líquido.
Materiais supercondutores têm muitas outras propriedades interessantes. Por exemplo, os cientistas descobriram que o fluxo de energia entre dois supercondutores, separadas por um fino material não condutor (chamado de junção Josephson) pode ser extremamente sensível à radiação de microondas externa. Um único fóton pode desencadear o fluxo de eletricidade através de um tal dispositivo apenas quando a tensão certa é aplicada. Este efeito singular, chamado de tunelamento ressonante, permite uma tão elevada precisão de medida que é utilizado para a sequenciação de DNA e criptografia quântica. O mesmo fenômeno determinou o padrão internacional de tensão ao longo de décadas.
O problema é que nós ainda não sabemos completamente como supercondutores funcionam, e se queremos realizar seu pleno potencial, precisamos entender.
Para explorar os supercondutores, uma das coisas que os cientistas fazem é reorganizá-los em todos os tipos de novas maneiras para empilhá-los em camadas, perfurar buracos e cortá-los em fios de apenas 50 nanômetros de espessura, por exemplo.
Estas novas disposições mudam a forma como os materiais se comportam, incluindo propriedades essenciais como a temperatura exata em que eles se tornam supercondutores, chamada de temperatura crítica (TC).
“Até agora”, disse Valerii Vinokur, “o campo não tem um padrão, uma forma precisa de medir a TC.”
Uma das coisas que sabemos é que ilhas de vida curta da supercondutividade podem se formar em um material um pouco acima da TC. Estas regiões esporadicamente emergentes desaparecem rapidamente, chamadas de flutuações supercondutoras, espelham de uma forma ou de outra a maioria das propriedades supercondutoras do material em temperaturas abaixo de TC. Apesar disso, as flutuações supercondutoras permanecem mal-entendidas, tanto que até mesmo medir sua vida tem sido um desafio. Vinokur e colaboradores propuseram um efeito que espelha o tunelamento ressonante acima da TC que é forte o suficiente para medir, e mais importante, fica mais nítido quando a temperatura se aproxima de TC.
Se verificado por meio de experimento, isso seria uma nova ferramenta de alta precisão para medir as propriedades fundamentais das flutuações supercondutoras e fornecer uma maneira de medir com mais precisão onde TC reside para cada material.
“Cada nova ferramenta no estudo da supercondutividade é absolutamente inestimável - traz mais precisão para o campo”, disse Galda.
“Isso também nos permitiria estudar as flutuações de forma mais ampla”, disse ele.
As flutuações, segundo Galda, são interessantes porque podem ajudar os pesquisadores a mapear os comportamentos microscópicos de materiais, que são provavelmente a chave para o porquê e como materiais agem da maneira que agem. As flutuações são influenciadas por um número de fenômenos diferentes; uma ferramenta para desvendar pelo menos uma variável do conjunto ajudaria os pesquisadores a desvendar as contribuições dos outros.
“Saber quanto tempo as flutuações vivem é muito importante e tem sido difícil determinar experimentalmente”, disse Vinokur.







terça-feira, 23 de dezembro de 2014

Universalidade da ordem de carga em cupratos (universality of charge order in cuprate superconductors)




Estas são as estruturas cristalinas do HgBa2CuO4+ e do YBa2Cu3O6+


Ordem de carga foi estabelecida em outra classe de cuprato, destacando a importância do fenômeno como uma propriedade geral desses materiais de alta TC


A descoberta em 1986 da supercondutividade em cupratos, uma classe de materiais cerâmicos, impulsionou um esforço impressionante de pesquisa em todo o mundo. Estes materiais ainda detêm o recorde de temperatura crítica e por isso são chamados supercondutores de alta-TC, apesar do fato de alta-TC significar apenas -140 °C. Embora esse valor pareça bastante baixo, é, de fato, muito alto em comparação com os supercondutores clássicos, onde é necessário resfriar o material perto da temperatura do zero absoluto, -274 °C, para o surgimento da supercondutividade. O salto emocionante da TC com a descoberta dos high-TC ainda nutre esperança de que algum dia, a supercondutividade seja possível em temperatura ambiente.

O fenômeno da supercondutividade é bem compreendido para os supercondutores clássicos. Quando não estão no estado supercondutor, supercondutores clássicos se comportam como metais, e a supercondutividade emerge desse estado metálico pelo emparelhamento de elétrons. O emparelhamento de portadores de carga é também o que está por trás da supercondutividade nos cupratos. No entanto, estes supercondutores são materiais cerâmicos, onde até mesmo o estado não-supercondutor (normal) é pouco compreendido, muito menos o mecanismo por trás do emparelhamento dos portadores de carga. É por isso que novos insights sobre as propriedades dos cupratos ainda mantém os cientistas animados - mesmo quase 30 anos após a descoberta da supercondutividade de alta TC.

Os cupratos vieram como um zoológico de materiais com abreviações do tipo LBCO, YBCO, LSCO, BSCO, e muitos mais, com fórmulas químicas de La2-xBaxCuO4, YBa2Cu3O6, La2-xSrxCuO4, Bi2Sr2-xLaxCuO6. Todos estes materiais têm uma característica comum: os átomos de cobre e oxigênio são dispostos em planos, formando objetos quase bidimensionais. Introduzir portadores de carga nos planos de oxigênio e cobre não resulta em um comportamento metálico simples. Em vez disso, é observada complexidade de fases incomuns em torno de supercondutividade, e como o estado supercondutor emerge a partir desses estados exóticos não tem explicação até agora.

      Um dos fenômenos observados em cupratos de alta TC é a chamada ordem de carga. Aqui, os portadores de carga que são introduzidos nos materiais cerâmicos tendem a formar um padrão regular de listras nos planos de cobre e oxigênio. Sendo colocado em um arranjo regular, torna o portador de carga menos móvel e impede a formação do estado supercondutor: ordem de carga é antagônica à supercondutividade. Naturalmente, isto é da maior importância para explorar os limites da supercondutividade e compreender o fenômeno em si. Ordem de carga foi observada em uma das classes de cupratos já em 1995. Ocorreu algum tempo para ser revelado que muitas outras classes de cupratos exibem o mesmo comportamento, e só nos últimos anos, evidências de um fenômeno ubíquo foram acumuladas, com a observação importante de ordem de carga no YBCO em 2012. Todas estas experiências forneceram evidências de que esse fenômeno é uma propriedade comum dos portadores de carga nos planos de oxigênio e cobre dos cupratos.

Iniciado por pesquisadores de Minnesota, uma equipe internacional de cientistas identificou agora ordem de carga no HgBa2CuO4, enfatizando este comportamento universal: HgBa2CuO4 é um cuprato com uma estrutura cristalina bastante simples que superconduz a temperaturas tão elevadas quanto -175 °C. Outro resultado importante do estudo é a descoberta de que a ordem de carga está intimamente relacionada com outra propriedade do material. Quando um campo magnético muito alto é aplicado, a supercondutividade é destruída, e a resistência elétrica sobe e desce com a mudança de campo magnético, conhecido como oscilações quânticas. Encontrar uma conexão universal entre o período destas oscilações quânticas e o período espacial da ordem de carga é uma das realizações do estudo. A associação dessas observações aparentemente distintas em um material tão complexo é de extrema importância, uma vez que contribui para dizer qual efeito é importante e qual é espúrio.

Uma parte importante desta pesquisa foi realizada com o difratômetro XUV do HZB, empregando o método particularmente sensível de ressonância de difração de raios-X macio. Este método já foi utilizado com sucesso para detectar fracas ordem de carga em uma série de materiais. Os resultados agora foram publicados na revista Nature Communications. “Depois de décadas de pesquisa, os estados incomuns da matéria nos cupratos e sua relação com o fenômeno da supercondutividade de alta TC ainda estão confundindo os cientistas”, diz o Dr. Eugen Weschke do Department Quantum Phenomena in Novel Materials, “a observação de ordem de carga neste modelo de sistema limpo acrescenta uma peça importante para a sistemática dos cupratos, e estamos felizes de ter contribuído para esses estudos com uma série de experimentos aqui no HZB.






quinta-feira, 13 de novembro de 2014

Materiais combinados aumentam a temperatura de supercondutores (Study at SLAC Explains Atomic Action in High-Temperature Superconductors)




Nessa ilustração, uma única camada do supercondutor seleneto de ferro FeSe (bolas e varetas) foi colocado sobre outro material conhecido como STO (SrTiO3). O STO é mostrado como pirâmides azuis, que representa o arranjo dos átomos. Um estudo da SLAC descobriu que, quando as vibrações naturais (brilho verde) do STO movem-se para o filme de seleneto de ferro, os elétrons no filme (esferas brancas) podem emparelhar-se e conduzir eletricidade com 100% de eficiência em temperaturas muito mais altas do que antes. Os resultados sugerem uma maneira de obter supercondutores que funcionem a temperaturas mais elevadas. Crédito: SLAC National Accelerator Laboratory



       Um estudo do Departamento de Energia do SLAC National Accelerator Laboratory sugere pela primeira vez como os cientistas podem projetar supercondutores que funcionam em altas temperaturas. Em seu artigo, a equipe liderada por pesquisadores do SLAC e da Stanford University explica porque uma fina camada de seleneto de ferro (FeSe) superconduz em temperaturas muito mais altas quando colocada em cima de outro material, o titanato de estrôncio STO (SrTiO3).

       A descoberta, publicada na revista Nature, abre um novo capítulo em 30 anos de busca para desenvolver supercondutores que operem à temperatura ambiente, o que pode revolucionar a sociedade, tornando muito mais eficiente tudo que funciona com eletricidade. Apesar dos supercondutores de alta temperatura de hoje operarem em temperaturas muito mais elevadas do que os supercondutores convencionais, eles ainda funcionam somente quando refrigerados a –135 °C.

       No novo estudo, os cientistas concluíram que vibrações naturais de trilhões de vezes por segundo no STO viajam para dentro do filme de FeSe em pacotes distintos, como uma saraivada de gotas de água sacudida por um cachorro molhado. Estas vibrações doam a energia que os elétrons precisam para emparelhar-se e o material superconduz a temperaturas mais elevadas do que seria possível isolado.

       “Nossas simulações indicam que esta abordagem - usando vibrações naturais em um material para aumentar a supercondutividade em outro - poderia ser usada para elevar a temperatura de funcionamento dos supercondutores à base de ferro em 50%”, disse Zhi-Xun Shen, professor da SLAC e da Universidade de Stanford e principal autor do estudo. Enquanto esse ganho ainda se distancia da temperatura ambiente, acrescenta Shen, “Nós agora temos o primeiro exemplo de um mecanismo que poderia ser usado para projetar supercondutores de alta temperatura com controle de átomo por átomo e torná-los melhor.”



Essa imagem mostra um aspecto importante: colocar FeSe em cima do STO aumenta sua supercondutividade apenas se for aplicada uma única camada (esquerda). Quando mais de uma camada é sobreposta, as vibrações naturais que vêm acima da camada de STO não fornecem aos elétrons a energia que precisam para emparelhar-se e superconduzir (direita). (Fonte: SLAC)


‘Espionando’ elétrons

       O estudo investigou uma feliz combinação de materiais desenvolvida há dois anos por cientistas na China. Eles descobriram que, quando uma única camada de FeSe é depositada sobre o STO, a sua temperatura crítica salta de 8 para aproximadamente 77 K (–196 °C). Embora isso tenha sido um salto enorme e bem-vindo, seria difícil construir sobre esse avanço sem entender o que, exatamente, estava acontecendo. No novo estudo, os pesquisadores construíram um sistema para o crescimento de filmes de FeSe de uma única camada em um substrato de STO.

A equipe examinou o material com uma técnica extremamente sensível chamada ARPES (angle-resolved photoemission spectroscopy), a qual mede as energias e momentos de elétrons ejetados a partir de amostras atingidas com a luz de raios-X. Isto diz aos cientistas como os elétrons dentro da amostra estão se comportando. Os pesquisadores também contaram com a ajuda de teóricos que fizeram simulações para ajudar a explicar o que estavam observando.


Uma nova direção promissora


“Essa é uma experiência muito impressionante, que teria sido muito difícil ou impossível de fazer em qualquer outro lugar”, disse Andrew Millis, físico teórico da Columbia University especialista em matéria condensada, mas que não esteve envolvido no estudo. “Isso está claramente nos dizendo algo importante sobre o porquê de colocar uma camada fina de SeFe neste substrato, que todos pensavam que era inerte e chato, e muda as coisas dramaticamente. Abre muitas perguntas interessantes que certamente estimulará uma série de investigações.”

Os cientistas ainda não sabem o que mantém os pares de elétrons em conjunto para que eles possam transportar corrente facilmente em supercondutores de alta temperatura. Sem qualquer forma de inventar novos supercondutores de alta temperatura ou melhorar os antigos, o progresso tem sido lento. Os novos resultados “apontam para uma nova direção que as pessoas não tinham considerado antes”, disse Moore. “Eles têm o potencial para quebrar recordes em supercondutividade de alta temperatura e dar-nos uma nova compreensão das coisas que estivemos lutando por anos”.

Ele acrescentou que o SLAC está desenvolvendo uma nova linha de raios-X com um sistema ARPES mais avançado para criar e estudar esses e outros materiais exóticos. “Esse documento prevê um novo caminho para a engenharia da supercondutividade nestes materiais”, Moore disse, “e nós estamos construindo as ferramentas para isso”.

Além de pesquisadores do SLAC e de Stanford, também contribuíram para o estudo cientistas da University of British Columbia, da University of Tennessee, do Lawrence Berkeley National Laboratory e da University of California.







domingo, 21 de setembro de 2014

O primeiro metamaterial supercondutor




Metamateriais são materiais que não ocorrem espontaneamente na natureza. O exemplo mais comum é o índice de refração negativo: na natureza, cada material conhecido tem um índice de refração positivo (sempre desvia a luz de uma determinada forma) - enquanto metamateriais pode curvar a luz na direção oposta.
Estes materiais têm levado a algumas aplicações interessantes, como mantos de invisibilidade. Agora, pesquisadores da Universidade de Baltimore, da Universidade de Maryland e do Laboratório de Pesquisa Naval fizeram a mesma coisa com supercondutores: elevaram sua temperatura crítica. Esta abordagem empírica, deliberada é muito diferente da pesquisa de costume, que é principalmente superou em conjecturas educado. [Experimental demonstration of superconducting critical temperature increase in electromagnetic metamaterials].
        Em teoria, este é um passo muito grande para a criação de um dos materiais mais poderosos, valiosos e indescritíveis do mundo: um supercondutor à temperatura ambiente. Enquanto supercondutores são usados extensivamente em ciência e medicina, o fato de que eles precisam ser mantidos em temperaturas criogênicas (abaixo -150C) os tornam muito caros e complicados. Muito trabalho está sendo feito na chamada “supercondutividade de alta temperatura”, mas o melhor valor obtido gira em torno de -140 ºC para o HgBa2Ca2Cu3Ox (HBCCO).
Na prática, os pesquisadores ainda têm um longo caminho a percorrer: sua abordagem com metamaterial foi capaz de elevar a temperatura crítica de estanho de 0,15 Kelvin. Ainda assim, no campo da mecânica quântica, onde quase nada se sabe sobre por que ou como existe supercondutividade, é uma grande notícia. Sabe-se muito pouco sobre supercondutores de alta temperatura - nós pensamos que as “camadas” destes compostos complexos agem como o equivalente de elétrons de guias de onda ópticos, conduzindo os elétrons através do material com resistência zero. Esta nova pesquisa pode nos ajudar a compreender estes supercondutores de alta temperatura um pouco melhor, e talvez também para ajustá-los para mover a temperatura crítica cada vez mais próxima à temperatura ambiente.
        Se nós somos capazes de controlar supercondutores - e há todas as razões para acreditar que podemos - então podemos esperar mudanças em muitas facetas da vida. Supercondutores em linhas de energia poderiam economizar bilhões de dólares em perdas de transmissão - ou permitir a construção de super  redes. Poderíamos substituir todo o sistema de transporte com os trens maglev super-rápidos... e isso é só o começo!




segunda-feira, 16 de junho de 2014

Pesquisadores afirmam ter resolvido enigma dos high-Tc (superconducting secrets solved after 30 years)




Mapa da estrutura do óxido de cobre supercondutor. Image: Nicolle R Fuller

        Pesquisadores da Universidade de Cambridge descobriram que ondas de elétrons, conhecidas como ondas de densidade de carga (charge density waves), criam “bolsões” retorcidos de elétrons, a partir do qual emerge a supercondutividade. Os resultados foram publicados em 15 de junho na revista Nature. Clique aqui!
Um dos problemas com supercondutores de alta temperatura é que não sabemos como encontrar novos, não sabemos quais os ingredientes responsáveis ​​pela criação da supercondutividade de alta temperatura, disse Dr. Sebastian Suchitra do Laboratório Cavendish, autor principal do artigo. Nós sabemos que há algum tipo de cola que faz com que os elétrons se emparelhem, mas não sabemos o que é essa cola.
        Para decodificar o que faz supercondutores de alta temperatura, os pesquisadores trabalharam ao contrário: determinando quais as propriedades que os materiais têm no estado normal, eles podem descobrir o que estava causando a supercondutividade.
Estamos tentando entender quais os tipos de interações acontecem no material antes de os elétrons emparelharem, uma dessas interações deve ser responsável pela criação da cola, disse Sebastian. Uma vez que os elétrons já estão emparelhados, é difícil saber o que os fez emparelhar-se. Mas se nós podemos quebrar os pares, então podemos ver o que os elétrons estão fazendo e esperamos entender de onde a supercondutividade veio. Determinando o estado normal de um supercondutor, faria o processo de identificação de novos muito menos aleatório, saberíamos que tipos de materiais a serem procurados, disse Sebastian.
        Trabalhando com campos magnéticos extremamente fortes, os pesquisadores foram capazes de cancelar o efeito supercondutor em cupratos. As tentativas anteriores para determinar as origens de supercondutividade, determinando o estado normal, usaram a temperatura em vez do campo magnético, mas levou a resultados inconclusivos.
        Estas experiências foram capazes de resolver o mistério em torno da origem de bolsas de elétrons no estado normal para criar a supercondutividade. Anteriormente, era amplamente difundida a ideia de que os bolsões de elétrons estavam localizados na região de forte supercondutividade. Em vez disso, os atuais experimentos usando fortes campos magnéticos revelou uma peculiar geometria, onde cada camada vai em uma direção diferente.
    Estes resultados apontaram os locais de bolsões onde a supercondutividade é mais fraca, e sua origem em ondas de elétrons conhecidas como ondas de densidade de carga. É esse estado normal que é substituído para produzir a supercondutividade na família de supercondutores dos cupratos.
Ao identificar outros materiais que têm propriedades semelhantes, esperamos que nos ajude a encontrar novos supercondutores a temperaturas cada vez mais altas, até mesmo, à temperatura ambiente, o que poderia abrir uma enorme gama de aplicações, disse Sebastian.

Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!