Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador nuclear fusion reactor. Mostrar todas as postagens
Mostrando postagens com marcador nuclear fusion reactor. Mostrar todas as postagens

domingo, 12 de abril de 2015

Construído ímã gigante para ser usado em projeto de fusão nuclear (Giant magnet built in Poway to be used in fusion energy project)




Os 48 elementos do magneto ITER devem gerar um campo magnético 200.000 vezes maior que o da Terra. Fonte: ITER.ORG


A empresa General Atomics está programada para revelar um eletroímã supercondutor de 1.000 ton para ser usado em um estudo de fusão nuclear por 35 países.
        De acordo com a empresa, o dispositivo construído que é poderoso o suficiente para levantar um porta-aviões para fora da água, será apresentado em uma conferência de imprensa em Poway, Califórnia (EUA).
        O eletroímã será utilizado nos experimentos do Reator Termonuclear Experimental Internacional (International Thermonuclear Experimental Reactor - ITER), na França, em que os cientistas vão tentar criar um plasma que demonstra a viabilidade da energia de fusão nuclear.
        Energia limpa de fusão nuclear é um santo graal para os pesquisadores que procuram alternativas à energia nuclear padrão e combustíveis baseados em carbono. Os cientistas dizem que a energia de fusão nuclear não cria resíduos de produtos de longo prazo ou riscos de colapso.
        Em seu site, o projeto ITER é descrito como um “experimento científico em grande escala destinado a provar a viabilidade da fusão nuclear como fonte de energia, e para coletar os dados necessários para a concepção e posterior operação da primeira usina de energia de fusão nuclear para produção de eletricidade”.
        Os Estados Unidos, China, Índia, Japão, Coréia do Sul, Rússia e nações da União Europeia estão envolvidos no projeto ITER. A preparação começou há sete anos no sul da França, e as operações estão programadas para iniciar em 2019, de acordo com um cronograma ITER.
        A inauguração pela General Atomics vem no rastro da notícia do mês passado que os cientistas da empresa com sede em San Diego descobriram como ímãs podem controlar rajadas de calor prejudiciais em um reator de fusão.
        A pesquisa construída em estudos anteriores mostra que campos magnéticos minúsculos podem suprimir as rajadas de calor - e agora especialistas em energia sabem como funciona o processo.




terça-feira, 3 de setembro de 2013

Reator de fusão nuclear começará a ser montado (nuclear fusion reactor will begin to be assembled)





Com informações da BBC - 26/08/2013

Reator de fusão nuclear começará a ser montado

Aqui serão montados os ímãs em forma de anel, capazes de conter a energia sem que o plasma toque nas paredes metálicas do reator. [Imagem: ITER]

Fusão nuclear
O maior projeto para o desenvolvimento de uma fonte de energia por meio da fusão nuclear começará a ser montado para valer. Terminadas as estruturas civis básicas, começaram a chegar os primeiros dos cerca de um milhão de componentes necessários para a construção do reator experimental.
       Há vários projetos tentando dominar a energia das estrelas, mas o ITER (Reator Internacional TermonuclearExperimental) é o maior deles. Após os problemas iniciais de projeto e dificuldades em coordenar um projeto internacional sem similares, agora há menos desconfiança quanto ao cumprimento do cronograma, que está dois anos atrasado.
       Desde os anos 1950, a fusão nuclear oferece o sonho da energia praticamente inesgotável. O objetivo é recriar o processo que gera a energia do Sol, usando como combustível duas formas de hidrogênio, os isótopos deutério e trício, ou trítio.

Magnetos do campo poloidal do ITER. [Imagem: ITER]

O interesse no desenvolvimento desse tipo de processo se explica pelo uso de um combustível barato (os isótopos), pelo pouco resíduo radioativo que produz e pela não emissão de gases do efeito estufa. Mas os desafios técnicos, tanto de lidar com um processo tão extremo quanto de projetar formas de extrair energia dele, sempre foram imensos.
De tão difícil de ser recriada artificialmente, críticos da ideia afirmam que a fusão nuclear "estará sempre 30 anos no futuro".
       O reator do ITER pretende colocar isso à prova. De um tipo conhecido como "tokamak", o reator é baseado no JET, um projeto-piloto europeu, e prevê a criação de um plasma superaquecido, com temperaturas de até 200 milhões de graus Celsius, calor suficiente para forçar os átomos de deutério e trítio a se fundir e liberar energia. O processo deverá ocorrer dentro de um enorme campo magnético em formato de anel - a única forma como um calor tão extremo ser contido.
       O JET conseguiu realizar reações de fusão em pulsos muito curtos, mas o processo exigiu mais energia do que foi capaz de produzir. No ITER, o reator está em uma escala muito maior e foi projetado para gerar dez vezes mais energia (500 MW) do que consumirá.

Cerca de 420 toneladas de fios supercondutores de nióbio-titânio já foram fabricados - mais de 90% do total necessário. [Imagem: ITER]

Reatores do futuro
O orçamento total do projeto é incerto e tem variado, para cima, ao longo dos anos - hoje as estimavas estão em €15 bilhões (cerca de R$ 45 bilhões). Ainda que haja um cronograma bem definido para a entrega das peças mais importantes - algumas chegam a pesar 600 toneladas - a divisão de sua fabricação entre os países membros provavelmente será motivo de novos atrasos.
       Os planos atuais preveem os primeiros testes da fusão nuclear em 2020. Partindo do pressuposto de que o ITER consiga realizar uma fusão que gere mais energia do que consome, o passo seguinte será a construção de um projeto de demonstração da nova tecnologia - o nome do ITER é "reator experimental".
       Depois que o protótipo funcionar, então poderão ser feitas as especificações para a construção dos primeiros reatores de fusão nuclear comerciais - ou seja, a crítica dos críticos, de que a fusão nuclear está sempre 30 anos no futuro, parece bastante otimista. A não ser que outros projetos em andamento tenham melhor sorte.

A sorte está lançada: Reator de fusão nuclear é selado





Redação do Site Inovação Tecnológica - 30/08/2013


Vista geral da construção do reator de fusão tipo estelarator, antes de seu fechamento final. [Imagem: IPP]

Esteralator
Enquanto o reator de fusão nuclear do ITER recebe o sinal verde para o início de sua montagem, o Wendelstein 7-X, na Alemanha, dá um passo ainda mais significativo.
Acabam de ser colocadas as últimas coberturas do complicado reator de fusão, selando definitivamente o invólucro onde os cientistas tentarão recriar o processo de geração de energia das estrelas.
Ao contrário do reator do ITER, que é do tipo tokamak, o reator do Wendelstein 7-X é do estelarator (stellarator).
Um tokamak é alimentado por uma corrente de plasma. Essa corrente fornece uma parte do campo magnético responsável por isolar o próprio plasma das paredes do reator - o grande desafio é evitar as instabilidades do plasma circulante pelo torus.
Um reator do tipo estelarator não tem corrente, eliminando de pronto o problema das instabilidades do plasma.
Mas o projeto tem seus próprios desafios, o que justificou a construção do Wendelstein 7-X, que, da mesma forma que o ITER, será um reator de pesquisas, para demonstrar a viabilidade do conceito.
Se tudo correr bem, ele entrará em funcionamento em 2014.

O anel retorcido do Wendelstein 7-X é formado por cinco módulos estruturalmente idênticos. [Imagem: IPP]

Janelas fechadas
O anel retorcido do Wendelstein7-X é formado por cinco módulos estruturalmente idênticos.
Cada uma das cinco seções do canal de plasma, assim como as 14 bobinas magnéticas supercondutoras, foram conectadas e revestidas por um invólucro externo de aço pesando 120 toneladas.
Cada um dos cinco módulos tem diversas "janelas", onde são conectados instrumentos de medição, bombas e mecanismos de resfriamento.
Com a soldagem da janela número 254, agora o reator de fusão, assim como a sorte do que ocorrerá lá dentro, estão totalmente selados.

Fonte: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=reator-fusao-nuclear-selado&id=010115130830&ebol=sim

Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!