Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador LANL. Mostrar todas as postagens
Mostrando postagens com marcador LANL. Mostrar todas as postagens

quinta-feira, 23 de julho de 2015

A pedra de Rosetta: um potencial supercondutor de alta temperatura (A potential Rosetta Stone of high-temperature superconductivity)




Simulação numérica da heterogeneidade magnética (vermelho = magnetismo, azul = supercondutividade), causada pela substituição de 1% dos átomos de índio por átomos de cádmio no supercondutor CeCoIn5. Imagem: NJ Curro (UC Davis) e Los Alamos National Laboratory



       A Pedra de Roseta tem a mesma mensagem escrita em três diferentes idiomas que dão aos estudiosos importantes insights sobre línguas antigas. O material CeCoIn5, em virtude do seu elevado grau de pureza, permite o estudo da interação entre magnetismo, supercondutividade e a desordem em três diferentes classes de supercondutores não convencionais (cupratos, pnictídeos e férmions pesados). O sistema modelo pode ajudar os pesquisadores a decifrar os complexos fenômenos emergentes em diferentes classes de supercondutores convencionais e no desenvolvimento de uma teoria completa para a supercondutividade de alta temperatura.
       Em geral, a descoberta de novos materiais supercondutores com maiores temperaturas críticas (TC) é feita por dopagem controlada, ou seja, substituindo estrategicamente certos elementos químicos por outros em um material de partida com uma TC já elevada. Embora essa abordagem funcione, prever o comportamento dos materiais supercondutores continua a ser um grande desafio devido a várias complexidades incluindo a desordem nos materiais cristalinos.
       Uma equipe internacional de cientistas coordenada pelo Los Alamos National Lab demonstrou que o composto CeCoIn5 com incrível elevada pureza e a mais alta temperatura supercondutora de um material à base de cério, pode servir como um sistema ideal para investigar o efeito de desordem nos materiais. Flutuações magnéticas, um limitador para a supercondutividade não convencional, são observadas no CeCoIn5, mas localmente desaparecem no material dopado com uma pequena quantidade de cádmio (que substitui índio). Surpreendentemente, a temperatura de transição supercondutora do material dopado permanece quase inalterada.
       O trabalho mostra 'gotas' estáticas de magnetismo em torno dos átomos dopados, mas que não afetam a supercondutividade neste material. Espera-se que mais pesquisas sobre este material permita decifrar outros aspectos da supercondutividade não convencional que poderia abrir caminho para o desenvolvimento de uma teoria mais completa desse fenômeno.







sexta-feira, 17 de julho de 2015

Usando campos magnéticos para entender a supercondutividade de alta temperatura (Using magnetic fields to understand high-temperature superconductivity)





Brad Ramshaw, cientista do Los Alamos National Laboratory (LANL) realiza um experimento no Pulsed Field Facility of the National High Magnetic Field Lab, expondo supercondutores de alta temperatura a campos magnéticos muito elevados, mudando a temperatura na qual os materiais se tornam supercondutores e revelando propriedades únicas destas substâncias. Crédito: Los Alamos National Laboratory


Cientistas do Los Alamos National Laboratory estão expondo supercondutores de alta temperatura a campos magnéticos muito elevados, mudando a temperatura que os materiais se tornam supercondutores e revelando propriedades únicas destas substâncias.
       “As medidas de campo magnético em supercondutores de alta temperatura estão pavimentando o caminho para uma nova teoria da supercondutividade”, diz Brad Ramshaw, um cientista do Los Alamos National Laboratory e principal pesquisador do projeto.
       O objetivo final da pesquisa é criar um supercondutor que opere à temperatura ambiente e não necessite de resfriamento. Todos os dispositivos que fazem uso de supercondutores, tais como os imãs MRI encontrados em hospitais, devem ser resfriados a temperaturas muito abaixo de zero, com nitrogênio líquido ou hélio, adicionando custo e complexidade à empresa.
“Esta é uma experiência verdadeiramente histórica que ilumina um problema de importância central para a física da matéria condensada”, disse Gregory Boebinger, cientista-chefe do Condensed Matter Science no National High Magnetic Field Laboratory's. “O sucesso deste trabalho é resultados das equipes terem as melhores amostras, os mais altos campos magnéticos, as técnicas mais sensíveis, e a criatividade inspirada por uma equipe de investigação multi-institucional”.
       Os supercondutores de alta temperatura, tais como o óxido de ítrio, bário e cobre (YBa2Cu3O6+x), não podem ser explicados pela teoria BCS, e assim os pesquisadores necessitam de uma nova teoria para estes materiais. Um aspecto interessante dos supercondutores de alta temperatura, é que se pode alterar a temperatura de transição supercondutora (TC) por doping, ou seja, alterando o número de elétrons que participam da supercondutividade.
       A pesquisa da equipe do Los Alamos descobriu que a dopagem do YBa2Cu3O6+x onde a temperatura crítica é mais alta (dopagem ótima), os elétrons se tornam muito pesados e se movimentam de forma correlacionada.
       “Isso nos diz que os elétrons estão interagindo muito fortemente quando o material é um supercondutor ideal”, disse Ramshaw. “Essa é uma peça vital de informação para construir a próxima teoria da supercondutividade”.
       “Um problema de destaque na supercondutividade de alta TC tem sido a questão de saber se um ponto quântico crítico - um valor especial de dopagem onde flutuações quânticas levam a fortes interações elétron-elétron - está elevando notavelmente a TC nestes materiais”, disse ele. “Prova de sua existência nunca foi encontrada devido à natureza robusta da supercondutividade em cupratos, se os cientistas demonstrarem que existe um ponto quântico crítico, isso constituiria um marco significativo para a resolução do mecanismo de emparelhamento supercondutor, explicou Ramshaw.
       “Montar as peças deste complexo quebra-cabeça da supercondutividade foi uma tarefa difícil que envolveu cientistas de todo o mundo por décadas”, disse Charles H. Mielke, diretor do Pulsed Field Facility of the National High Magnetic Field Lab. “Embora o quebra-cabeça esteja incompleto, esta peça essencial liga resultados experimentais indiscutíveis de aspectos fundamentais da física da matéria condensada”.
       A equipe mediu oscilações quânticas magnéticas em função da dopagem em campos magnéticos muito fortes. Campos magnéticos elevados permitem que o estado normal seja acessado através da supressão da supercondutividade. Os campos que se aproximam de 100 T, em particular, permitem que as oscilações quânticas sejam medidas muito próximas do máximo na temperatura de transição, TC ~ 94 K. Essas oscilações quânticas fornecem aos cientistas uma imagem de como os elétrons estão interagindo uns com os outros antes que eles se tornem supercondutores.
       Investigando uma gama muito ampla de dopagens, os autores mostraram que existe um forte aumento da massa efetiva na dopagem ótima. Um forte incremento da massa efetiva é a assinatura no aumento da força de interação entre os elétrons, e a assinatura de um ponto quântico crítico. A quebra de simetria responsável por este ponto ainda não foi fixada, embora uma conexão com o ordenamento de carga parece ser provável, observa Ramshaw.






Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!