Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador MIT. Mostrar todas as postagens
Mostrando postagens com marcador MIT. Mostrar todas as postagens

sexta-feira, 10 de julho de 2015

Bobinas supercondutoras estimulam avanços na terapia de feixe de prótons (Superconducting Coils Spur Advances in Proton Beam Therapy)



Um acelerador supercondutor de prótons do MIT está diretamente ligado à cabeça da torre do PRONOVA para a terapia de radiação com feixe de prótons (PBRT - proton beam radiation therapy). A grande redução no tamanho do acelerador permite o tratamento de um ou dois ambientes, reduzindo o preço e melhorando a comodidade do PBRT em pacientes com câncer.


Para muitos tipos diferentes de câncer entre os pacientes de vários grupos etários, a terapia de radiação com feixe de prótons (PBRT- proton beam radiation therapy) é uma alternativa desejável em relação a outros tipos de terapia que usam radiação. Na PBRT, os aceleradores liberam feixes de prótons de alta energia para irradiar tumores cancerígenos. Um feixe de prótons pode ser apontado diretamente para o tumor, poupando da radiação o tecido saudável circundante.
       Com apenas 14 clínicas nos EUA, a PBRT não está disponível para todos os que se qualificam. Por mais de 10 anos, cientistas do Plasma Science and Fusion Center (PSFC) no MIT pesquisaram novos projetos para reduzir os custos de máquinas PBRT em clínicas de tratamento de câncer em todo o mundo.
       Em 2008, uma equipe do PSFC projetou um equipamento leve e compacto, substituindo bobinas eletromagnéticas de cobre com variedades supercondutoras. Bobinas supercondutoras são arrefecidas a baixas temperaturas a fim de reduzir a resistividade do material. O uso de materiais supercondutores permite fabricar bobinas menores com menos espiras e gerar campos magnéticos elevados, diminuindo o peso total do acelerador.
       O novo design pode ser colocado diretamente sobre a cabeça da torre que direciona o feixe de prótons em tumores. O projeto do MIT substitui o enorme tamanho do antigo sistema que exigia uma sala separada para o equipamento e outra para o paciente.
       Agora, a equipe reduziu ainda mais o tamanho e o peso do sistema, eliminando pesados componentes de ferro. Os supercondutores vão substituir uma viga de ferro no centro da lacuna de aceleração, o que aumenta o campo magnético estático e mantém os prótons num movimento em espiral no plano da aceleração. Bobinas supercondutoras também substituirão uma junção de ferro que contém o campo magnético interno e protege o equipamento no exterior.
       O ferro atinge a saturação magnética em cerca de 2 Tesla. Com a substituição por eletroímãs supercondutores, a equipe pode chegar a campos magnéticos mais altos com uma fonte de alimentação inferior. O design irá também proporcionar um maior controlo sobre a intensidade do feixe, que pode ser controlado alterando a corrente fornecida às bobinas. Isso permitirá aos médicos aumentarem ou diminuírem a intensidade para correlacionar com diferentes profundidades e densidades do tumor.
       Os pesquisadores do PSFC tem outras expectativas para o desenvolvimento e aperfeiçoamento de aceleradores de prótons para tratamento de câncer. Ao aumentar o campo magnético sem restaurar a uma fonte de alta tensão, a equipe espera ser capaz de acelerar outros íons pesados ​​a altas velocidades. Por exemplo, íons de carbono podem ser mais eficazes para o tratamento do câncer do que prótons de luz.





sexta-feira, 19 de dezembro de 2014

Nova lei para os supercondutores (New law for superconductors)




Átomos de nióbio e nitrogênio em um filme supercondutor ultrafino que ajudaram pesquisadores do MIT a descobrirem uma lei universal da supercondutividade. Imagem: Yachin Ivry.


Descrição matemática da relação entre espessura, temperatura e resistividade pode estimular avanços


Pesquisadores do MIT descobriram uma nova relação matemática entre a espessura do material, a temperatura e a resistência elétrica que parece válida para todos os supercondutores. Eles descreveram suas descobertas na revista Physical Review B.
       O resultado pode lançar luz sobre a natureza da supercondutividade e também pode levar a melhorias na engenharia de circuitos supercondutores para aplicações em computação quântica e computação de potência ultrabaixa.
       “Fomos capazes de usar esse conhecimento para fazer dispositivos de área maior, que não eram possíveis de construir anteriormente, e o rendimento dos dispositivos aumentou significativamente”, diz Yachin Ivry, um pós-doc do MIT.
Supercondutores são materiais que, em temperaturas próximas do zero absoluto, apresentam nenhuma resistência elétrica. Isto significa que é preciso pouquíssima energia para induzir uma corrente elétrica. Um único fóton irá fazer o truque, é por isso que eles são úteis como fotodetectores quânticos. Um chip de computador construído a partir de circuitos supercondutores consumiria, em princípio, um centésimo da energia de um chip convencional.
       “Filmes finos são cientificamente interessantes, porque eles permitem que você obtenha mais de perto o que nós chamamos de transição supercondutora-isolante”, diz Ivry. “A supercondutividade é um fenômeno que depende do comportamento coletivo dos elétrons. Então, se você vai a dimensões cada vez menores, você obtém o início do comportamento coletivo”.
       Especificamente, Ivry estuda o nitreto de nióbio, um material que tem uma temperatura crítica relativamente elevada. Mas, como a maioria dos supercondutores, ele tem uma temperatura crítica mais baixa quando depositado em filmes finos nos quais se baseiam os nanodispositivos.
       Trabalho teórico anterior tinha caracterizado a temperatura crítica do nitreto de nióbio como uma função da espessura da película ou da sua resistividade medida à temperatura ambiente. Mas nem a teoria parecia explicar os resultados que Ivry estava obtendo. “Vimos grande dispersão e sem tendência clara”, diz ele. “Não fazia sentido, porque nós crescemos os filmes em laboratório, nas mesmas condições”.
       Assim, os pesquisadores realizaram uma série de experimentos em que eles mantinham constantes ou a espessura ou a ‘resistência superficial’, a resistência do material por unidade de área, enquanto variavam outro parâmetro. Eles, então, mediram as alterações na temperatura crítica. Um claro padrão emergiu: espessura vezes temperatura crítica igual a uma constante (A), dividido pela resistência da folha elevada a uma potência específica (B).
       Após derivar a fórmula, Ivry comparou com outros resultados descritos na literatura. Porém, seu entusiasmo inicial evaporou-se com o primeiro artigo consultado. Embora a maioria dos resultados relatados concorde perfeitamente com sua fórmula, dois deles eram dramaticamente errados. Em seguida, um colega que estava familiarizado com o artigo apontou que seus autores tinham reconhecido em uma nota de rodapé que as duas medidas podiam refletir erro experimental: ao construir o seu dispositivo de teste, os pesquisadores tinham esquecido de ligar um dos gases que eles usaram para depositar seu filmes.

Ampliando o escopo

Os outros artigos de nitreto de nióbio consultados por Ivry davam suporte às suas previsões, então ele começou a expandir o estudo para outros supercondutores. Cada novo material investigado, o obrigou a ajustar as constantes (A e B) da fórmula. Mas, a forma geral da equação se mantinha através de resultados relatados por cerca de três dezenas de supercondutores diferentes.
       Não era necessariamente surpreendente que cada supercondutor tivesse sua própria constante associada, mas Ivry e Berggren não estavam felizes que a sua equação exigisse duas delas. Quando Ivry ‘plotou’ graficamente A contra B para todos os materiais investigados, os resultados ficaram em linha reta.
       Encontrar uma relação direta entre as constantes permitiu contar com apenas uma delas sob a forma geral de sua equação. Mas mais interessante, os materiais em cada extremidade da linha tinham propriedades físicas distintas. Aqueles no topo eram altamente desordenados - ou, tecnicamente, ‘amorfos’; aqueles da parte inferior eram mais ordenados, ou ‘granular’. Então, a tentativa inicial de Ivry para banir uma deselegância na sua equação já pode fornecer algumas dicas sobre a física dos supercondutores em pequenas escalas.
       “Nenhuma teoria admitiu até agora uma explicação para a relação da temperatura crítica com a resistência superficial e espessura da folha de uma ampla classe de materiais”, diz Claude Chapelier, pesquisador do France’s Alternative Energies and Atomic Energy Commission. “Existem vários modelos que não preveem as mesmas coisas”.
       Chapelier diz que gostaria de ver uma explicação teórica para essa relação. Mas, enquanto isso, “isso é muito conveniente para aplicações técnicas”, diz ele, “porque há um monte de divulgação de resultados, e ninguém sabe se eles vão conseguir bons filmes para dispositivos supercondutores. Ao colocar um material sob esta lei, você já sabe se é um bom filme supercondutor ou não”.






Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!