Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador onda de densidade de carga. Mostrar todas as postagens
Mostrando postagens com marcador onda de densidade de carga. Mostrar todas as postagens

terça-feira, 15 de dezembro de 2015

Pesquisadores descobrem uma nova dimensão na supercondutividade de alta temperatura (Researchers discover a new dimension to high-temperature superconductivity)





Nesta representação artística, um pulso magnético (direita) e de raios-X de luz laser (à esquerda) convergem para um supercondutor de alta temperatura para estudar o comportamento de seus elétrons. (SLAC National Accelerator Laboratory)


Pesquisadores do Departamento de Energia dos EUA e do SLAC National Accelerator Laboratory combinando poderosos pulsos magnéticos com alguns dos mais brilhantes raios-x do planeta, descobriram um surpreendente arranjo 3-D de elétrons em um supercondutor de alta temperatura.
       Esta reviravolta inesperada é um marco importante na jornada de 30 anos para entender melhor como materiais supercondutores de alta temperatura conduzem eletricidade sem resistência a temperaturas centenas de graus centígrados acima dos supercondutores convencionais.
       O estudo também resolve uma aparente incompatibilidade em dados experimentais e traz um novo rumo para o completo mapeamento do comportamento dos elétrons sob diferentes condições nestes materiais exóticos. Os pesquisadores têm um objetivo final de ajudar na concepção e desenvolvimento de novos supercondutores que funcionam em temperaturas mais quentes.

Física “Totalmente inesperada”
“Isso foi totalmente inesperado, e também muito emocionante. Este experimento identificou um novo ingrediente a considerar neste campo de estudo. Ninguém tinha visto esta imagem 3-D antes”, disse Jun-Sik Lee, um cientista do SLAC e um dos líderes do experimento. “Este é um passo importante na compreensão da física dos supercondutores de alta temperatura”.

A nova onda de supercondutividade
O efeito 3-D que os cientistas observaram em um material supercondutor conhecido como YBCO (óxido de ítrio, bário e cobre), é um tipo recentemente descoberto de “onda densidade de carga” (charge density wave). Esta onda não tem o movimento de oscilação de uma onda de luz ou uma onda sonora; ela descreve um arranjo estático e ordenado de aglomerados de elétrons em um material supercondutor. Sua coexistência com a supercondutividade é desconcertante para os pesquisadores porque parece entrar em conflito com os pares de elétrons que se movem livremente que definem a supercondutividade.
       A versão 2-D dessa onda foi vista pela primeira vez em 2012 e tem sido estudada extensivamente. O recente experimento LCLS revelou uma versão separada 3-D que aparece mais forte do que a forma 2-D e intimamente ligada tanto ao comportamento 2-D como com a supercondutividade do material.
       O experimento levou vários anos para ser feito e exigiu a experiência internacional para preparar amostras especializadas e construir um poderoso ímã que produziu pulsos magnéticos compactados de milésimos de segundo. Cada pulso era 10-20 vezes mais forte do que aqueles em uma típica máquina de ressonância magnética.

A poderosa combinação de magnetismo e luz
Esses pulsos magnéticos curtos e intensos suprimiram a supercondutividade nas amostras de YBCO e forneceu uma visão mais clara dos efeitos da onda de densidade de carga. Eles foram imediatamente seguidos em intervalos precisamente cronometrados por pulsos de laser de raios-x, o que permitiu aos cientistas medir os efeitos de onda.
“Esta experiência é uma maneira completamente nova de usar o LCLS que abre a porta para uma nova classe de experimentos futuros”, disse Mike Dunne, diretor do LCLS.
       “Eu estava animado com este experimento há muito tempo”, disse Steven Kivelson, um professor de física da Universidade de Stanford que contribuiu para o estudo e tem pesquisado supercondutores de alta temperatura desde 1987.
       Kivelson disse que o experimento estabelece limites muito claros sobre a temperatura e a intensidade do campo magnético no qual o efeito 3-D recém-observado emerge. “Não há nada vago sobre isso”, disse ele. “Você agora pode fazer uma declaração definitiva: Neste material existe uma nova fase”.
       O experimento também acrescenta peso à evidência crescente de que ondas de densidade de carga e supercondutividade “podem ​​ser pensados como dois lados da mesma moeda”, acrescentou.

Em busca de links comuns
Mas também está claro que o YBCO é incrivelmente complexo, e um mapa mais completo de todas as suas propriedades é necessário para chegar a qualquer conclusão sobre o que mais importa para a sua supercondutividade, disse Simon Gerber e Hoyoung Jang, principais autores do estudo.
       Experimentos adicionais são necessários para fornecer uma visualização detalhada do efeito 3-D, e para saber se o efeito é universal em todos os tipos de supercondutores de alta temperatura, disse Wei-Sheng Lee, que contribuiu com o estudo. “As propriedades deste material são muito mais ricas do que pensávamos”, disse Lee. “Continuamos a fazer novas e surpreendentes observações à medida que desenvolvemos novas ferramentas experimentais”, acrescentou Zhu.









segunda-feira, 23 de novembro de 2015

Desvendando complexas fases eletrônicas em um supercondutor (Unraveling the complex, intertwined electron phases in a superconductor)





Representação da onda de densidade de carga. Este padrão de halteres, cada uma representando o orbital em um átomo de oxigênio, pode parecer estático, mas se você olhar de perto, você verá que as cores dos orbitais mudam quando você se move da esquerda para a direita. Esta mudança de cor (amarelo, branco, azul, branco, amarelo, branco, azul ...) representa mudanças na densidade de carga (alto, médio, baixo, médio, alto, médio, baixo ...) que se move através do plano da esquerda para a direita. Crédito: Laboratório Nacional de Brookhaven




Uma equipe liderada por pesquisadores do Brookhaven National Laboratory e da Universidade de Cornell nos EUA identificou um arranjo chave de elétrons em um supercondutor de alta temperatura. O material é um membro da família dos cupratos, compostos supercondutores à base de cobre e oxigênio que são os principais candidatos para inúmeras aplicações de alto impacto.
O fenômeno que eles estudaram é conhecido como uma onda de densidade de elétrons. Ao contrário de outros elétrons no material que se movem livremente, a onda de densidade de elétrons é uma fase periódica, fixa que parece competir com e dificultar a fase supercondutora. Muitos pesquisadores acreditam que a onda de densidade é a chave para desvendar os cupratos: se eles compreenderem completamente a onda de densidade de elétrons, então podem ser capazes de determinar como suprimi-la ou removê-la para induzir a supercondutividade, possivelmente, até mesmo à temperatura ambiente. Mas, para atingir esse objetivo, eles devem primeiro obter uma compreensão completa das causas da onda de densidade de elétrons.
Este estudo é o primeiro a identificar as origens em escala atômica e influências que produzem a onda de densidade em cupratos. “Em um metal, você tem elétrons que vão em todas as direções, com uma vasta gama de energias e momentos. É quase como um gás de elétrons”, disse o cientista chefe do estudo, Séamus Davis, um de físico Brookhaven. “Qual desses elétrons fornecem os componentes que compõem o estado onda de densidade em cupratos? Fomos capazes de responder a esta pergunta. Nós identificamos tanto a energia e momentos dos elétrons relevantes”.

Outra peça do quebra-cabeça
Existem diversos membros conhecidos da família dos cupratos. O ‘melhor’ descoberto até agora funciona como um supercondutor a cerca de 140 K (-130 °C), aproximadamente a meio caminho entre o zero absoluto (-273 °C) e a temperatura ambiente (21 °C). Todos têm estruturas em camadas, com a supercondutividade ocorrendo nas camadas de óxido de cobre (CuO2), cada uma com apenas uma molécula de espessura. Além da fase supercondutora, estes materiais apresentam uma outra forma misteriosa de ordem eletrônica, chamada de “pseudogap”. Embora muito mal compreendida, em geral, a sua escala de energia característica, chamada de gap de energia, está bem estabelecida. O grupo do professor Davis e outros estudaram esta fase extensivamente.
No ano passado, juntamente com outros pesquisadores, a equipe estabeleceu a primeira ligação entre o desaparecimento da onda de densidade na fase pseudogap e a emergência, como afirma Davis, de “elétrons universalmente livres necessários para a supercondutividade irrestrita”.
Em trabalho mais recente, o resultado mais importante parece sugerir uma outra ligação íntima entre a onda de densidade de elétrons e a fase pseudogap: a energia característica de modulação da onda de densidade é igual à energia do pseudogap. Além disso, eles mostraram que os elétrons que compõem a onda de densidade de elétrons têm a característica dinâmica na qual o pseudogap aparece. A implicação fundamental é que o estado de pseudogap é de alguma forma o ‘pai’ do estado de onda de densidade.

Imagem de elétrons com elétrons
A nova abordagem experimental e o conceito do estudo em si foram concebidos depois de um dos autores do estudo, o físico teórico Subir Sachdev, considerar o comportamento da onda de densidade de elétrons diferente ao longo das diferentes ligações na célula unitária de CuO2.
“Ao olhar para alguns dos dados anteriores obtidos pelo grupo de Davis, notei que o comportamento dos elétrons era exclusivo para as ligações horizontais no plano CuO2, disse ele. “Eu me perguntei se isso poderia ser a onda de densidade de carga”.
Ele contatou Davis e eles começaram a projetar o experimento. Eles propuseram uma nova maneira de estudar um cuprato, que nenhum outro grupo havia tentado: uma potente técnica de imagem desenvolvida por Davis, chamada de imagem de sub-rede, é feita utilizando um microscópio de varredura por tunelamento (STM) capaz de determinar a estrutura eletrônica em diferentes subconjuntos de átomos no cristal, as chamadas sub-redes.
Um STM fotografa uma amostra usando elétrons; o tipo usado aqui pode ‘ver’ detalhes menores do que a célula unitária do cristal CuO2. Ele usa uma ponta metálica muito afiada, colocada extremamente perto da superfície da amostra, menos de um décimo de nanômetro de distância. Uma pequena voltagem é então aplicada através da ponta e da amostra, o que, por causa da sua proximidade, permite o tunelamento de elétrons através do espaço de vácuo entre a ponta e a amostra. A taxa de elétrons que passa através da ponta, ou em outras palavras, a corrente é uma medida da densidade de elétrons na fina região da amostra diretamente abaixo dela. Então, quando a ponta é passada através da superfície de amostra, cria-se uma imagem espacial da densidade de elétrons e, em separado, da rede cristalina.








terça-feira, 14 de julho de 2015

Físicos mapeiam a estrutura eletrônica da supercondutividade (Physicists map electron structure of superconductivity’s ‘doppelgänger’)





Andrea Damascelli pesquisa materiais com propriedades supercondutoras. Fonte: Hogan Wong/A Ubyssey


Cientistas estão pintando um profundo quadro do ordenamento de carga em supercondutores de alta temperatura, uma auto-organização eletrônica que pode estar intrinsecamente ligada com a própria supercondutividade.
       “Tudo o que podemos aprender sobre a estrutura do ordenamento de cargas nos leva um passo mais próximo de entender como este ordenamento está entrelaçado e potencialmente compete com a supercondutividade”, diz Riccardo Comin, principal autor que conduziu a pesquisa.
Dois estudos confirmam que o ordenamento de carga forma um ‘padrão de onda d’ predominantemente unidimensional.
       O ordenamento de carga cria instabilidades em cupratos supercondutores a temperaturas maiores do que -100º C. Isso faz com que alguns elétrons se reorganizem em novos padrões estáticos periódicos que competem com a supercondutividade. A razão por trás desta competição permaneceu uma incógnita até que esses estudos demonstraram que o ordenamento de carga e a supercondutividade compartilham a mesma simetria subjacente.
       “Curiosamente, os pares de elétrons supercondutores também apresentam uma configuração chamada onda d”, diz Andrea Damascelli, líder da equipe de pesquisa. “Isso dá mais credibilidade à possibilidade de que ambos os fenômenos são irmãos alimentando uma interação comum subjacente”.
Comin e colaboradores investigaram amostras frias de óxido de cobre, ítrio e bário com raios-x e descobriram que o ordenamento de carga produz um padrão listrado, ou seja, os elétrons se auto-organizam ao longo de uma direção, em vez de em duas direções.
       “Combinadas”, diz Comin, “nossas investigações fornecem uma resolução completa da simetria do ordenamento de carga em cupratos”.





sexta-feira, 10 de abril de 2015

Cupratos ganham suas listras (Cuprates earn their stripes)



Esboço dos padrões estáticos para (a) ordem de carga 1D (listrado) e b) 2D (xadrez), dentro do plano 2D Cu-O. Fonte:  http://www.nanowerk.com/nanotechnology-news/newsid=39490.php


A comunidade de pesquisa canadense continua a liderar este campo científico com resultados inovadores e de grandes questões teóricas. O mais recente avanço responde a uma pergunta fundamental sobre a estrutura eletrônica microscópica dos cupratos supercondutores. Este resultado é o produto de uma estreita colaboração de longa data entre a University of British Columbia Quantum Matter Institute (UBC) e a Canadian Light Source (CLS).
Nos cupratos supercondutores, a onda de densidade de carga, na qual os elétrons assumem um padrão estático, diferente do padrão que a estrutura cristalina do material define, interage com a supercondutividade. Você também pode pensar os elétrons supercondutores como carros em uma estrada, todos se movendo na mesma velocidade e direção. Mas o estado de onda de densidade de carga age como um engarrafamento modelado: nenhum movimento, em qualquer lugar. 
Entender o que causa esse padrão é considerado um passo fundamental para compreender a supercondutividade, mas até mesmo determinar a natureza do padrão tem sido difícil. Os principais modelos teóricos preveem uma estrutura de linha paralela ou um padrão xadrez. Infelizmente, mesmo com técnicas avançadas, revelou-se impossível ver a diferença entre os dois modelos. Isto é, até os mais recentes resultados do Comin na Science, os quais mostram que o cuprato supercondutor em questão tem um padrão tipo listra ao invés de um tabuleiro de xadrez.
A equipe UBC-CLS utilizou uma abordagem experimental não convencional para reconstruir um modelo bidimensional do padrão estático de elétrons de 1D – bem como as reconstruções tomográficas utilizadas para fins médicos.
Esses resultados oferecem novos insights fundamentais que ajudam a aprimorar a busca da supercondutividade de temperatura ambiente. No entanto, as questões mais desafiadoras permanecem: Qual é a força motriz por trás da tendência dos elétrons se moverem juntos de forma coerente no estado supercondutor, e como pode a temperatura de transição ser melhorada? Apesar de quase 30 anos de história, o campo da supercondutividade de alta temperatura está mais vivo do que nunca.





Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!