Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador férmion de Majorana. Mostrar todas as postagens
Mostrando postagens com marcador férmion de Majorana. Mostrar todas as postagens

domingo, 2 de junho de 2019

Novo qubit robusto promete processador quântico em escala industrial


Redação do Site Inovação Tecnológica -20/05/2019


Foto do protótipo e esquema do qubit baseado nos férmions de Majorana. [Imagem: Antonio Fornieri/Universidade de Copenhagen]



Qubit plano
Uma equipe da Dinamarca e dos EUA, liderada pelo professor Antonio Fornieri, construiu um chip de memória quântica que promete facilitar a fabricação dos computadores quânticos em larga escala.
Vários grupos estão tentando há anos construir um protótipo de computador quântico que a indústria possa escalonar, mas os blocos fundamentais da computação quântica, os qubits, ainda não são robustos o suficiente para funcionar no ambiente cheio de ruído de um computador de grande porte.
Uma teoria desenvolvida há apenas dois anos propôs uma maneira de tornar os qubits mais resilientes mediante uma combinação de um semicondutor, o arseneto de índio, com um supercondutor, o alumínio, em um dispositivo planar.
Agora, essa teoria foi confirmada experimentalmente e, melhor ainda para o escalonamento dos qubits, em um componente plano, como as bolachas de silício usadas para fizer os chips atuais, e robusto, graças às propriedades protetoras da combinação do semicondutor com o supercondutor.
“Nosso protótipo é um primeiro passo significativo no uso deste tipo de sistema para fazer bits quânticos que são protegidos contra perturbações. No momento, ainda precisamos de alguns ajustes - podemos melhorar o projeto e os materiais. Mas é uma estrutura potencialmente perfeita,” afirmou Fornieri.


Qubit de Majorana
O alumínio e o arseneto de índio formaram um dispositivo, chamado junção Josephson, capaz de acomodar partículas de Majorana, que já se previra possuírem proteção topológica contra a decoerência - a decoerência é o fenômeno que marca a perda dos dados registrados em um qubit.
São os chamados férmions de Majorana de modo zero, quasipartículas que emergem na superfície dos supercondutores topológicos, que funcionam como qubits tolerantes a falhas e imunes a ruídos.
Também se sabia que o alumínio e o arseneto de índio funcionam bem juntos porque uma supercorrente pode fluir entre eles, uma vez que, diferentemente da maioria dos semicondutores, o arseneto de índio não possui uma barreira que impeça que os elétrons de um material entrem em outro. Desta forma, a supercondutividade do alumínio pode fazer as camadas superiores do arseneto de índio, que é um semicondutor, funcionarem como supercondutoras - por isso se diz que ele é um supercondutor topológico.
Agora falta montar o qubit plano junto a um processador quântico para checar sua robustez e, se tudo der certo, começar a fabricá-lo em larga escala.
Hoje, trilhões de transistores, as unidades básicas dos processadores eletrônicos, são postos nas pastilhas planas de silício. A expectativa é que o mesmo torne-se realidade para os computadores quânticos, com milhões de qubits operando harmoniosamente em dispositivos miniaturizados e fabricados em escala industrial.

Bibliografia:

Evidence of Topological Superconductivity in Planar Josephson Junctions. Antonio Fornieri, Alexander M. Whiticar, F. Setiawan, Elías Portolés, Asbjørn C. C. Drachmann, Anna Keselman, Sergei Gronin, Candice Thomas, Tian Wang, Ray Kallaher, Geoffrey C. Gardner, Erez Berg, Michael J. Manfra, Ady Stern, Charles M. Marcus, Fabrizio Nichele.
Nature, Vol.: 569, pages 89-92.
DOI: 10.1038/s41586-019-1068-8




domingo, 11 de março de 2018

Primeiro supercondutor topológico usa partículas de Majorana como qubits



Redação do Site Inovação Tecnológica -  05/03/2018


As placas de alumínio foram anexadas ao isolador topológico usando platina. A imagem mostra um dos dispositivos usados no experimento. Devido ao estresse, induzido por vários resfriamentos, apareceram saliências vistas claramente no intervalo do dispositivo. Isto faz com que as características dos pares supercondutores de elétrons variem em diferentes direções, uma assinatura de supercondutividade não-convencional. [Imagem: Chalmers University]



Os férmions de Majorana nem bem saíram da teoria e já começam a ajudar a computação quântica a combater um dos seus principais problemas: a decoerência, que é a perda dos dados que ocorre quando a interferência externa faz com que os qubits decaiam de seus estados quânticos entrelaçados ou superpostos.
Com sua insensibilidade característica à decoerência, essas partículas de Majorana estão se tornando o centro das atenções para a construção de qubits estáveis - a Microsoft está tentando desenvolver esse tipo de computador quântico.
As partículas de Majorana são partículas fundamentais que, assim como os elétrons, nêutrons e prótons, pertencem ao grupo dos férmions. Elas podem ser entendidas de forma muito simplificada como um “meio elétron. E, ao contrário de todos os outros férmions, os férmions de Majorana são sua própria antipartícula.
O problema é que eles só ocorrem em circunstâncias muito especiais, o que explica porque, mesmo previstos por Ettore Majorana em 1937, só foram demonstrados na prática em 2012.
Agora, os pesquisadores da Universidade de Tecnologia de Chalmers, na Suécia, conseguiram fabricar um componente capaz de hospedar as partículas de Majorana, o que significa que torna-se possível usá-las na prática.
Nos materiais de estado sólido, os férmions de Majorana só parecem ocorrer nos chamados supercondutores topológicos - um tipo de supercondutor que é tão novo e especial que pode-se dizer que não haviam provas inequívocas de que ele existisse de verdade.
Sophie Charpentier e seus colegas estão entre os primeiros grupos de pesquisa no mundo a divulgar resultados experimentais indicando que eles realmente conseguiram fabricar um supercondutor topológico.
A equipe começou trabalhando com um isolante topológico - que não é supercondutor - feito de telureto de bismuto (Be2Te3). Um isolante topológico é basicamente um isolador, ou seja, não conduz corrente elétrica em seu interior - contudo, ele conduz a corrente na sua superfície.



O segredo do supercondutor topológico está na camada na junção dos materiais. [Imagem: Sophie Charpentier et al. - 10.1038/s41467-017-02069-z]



Sobre o isolante topológico, a equipe usou platina para adicionar uma camada de um supercondutor convencional por cima, neste caso o alumínio, que conduz a corrente totalmente sem resistência a temperaturas muito baixas.
Enquanto fazia testes e medições, a equipe precisou resfriar o material várias vezes e esses ciclos de resfriamento repetidos parecem ter gerado tensões no material, o que fez com que a supercondutividade alterasse suas propriedades.
“Os pares de elétrons supercondutores passaram a vazar para o isolante topológico, que também se torna supercondutor,” explicou o professor Thilo Bauch. E esse comportamento representa a característica típica de um supercondutor topológico, onde os férmions de Majorana sentem-se à vontade para não se destruírem mutuamente.
“Para aplicações práticas, o material é principalmente de interesse para aqueles que estão tentando construir um computador quântico topológico. Nós queremos explorar a nova física que se esconde nos supercondutores topológicos - este é um novo capítulo da física,” disse a professora Floriana Lombardi, coordenadora da equipe.



Bibliografia
Induced unconventional superconductivity on the surface states of Bi2Te3 topological insulator. Sophie Charpentier, Luca Galletti, Gunta Kunakova, Riccardo Arpaia, Yuxin Song, Reza Baghdadi, Shu Min Wang, Alexei Kalaboukhov, Eva Olsson, Francesco Tafuri, Dmitry Golubev, Jacob Linder, Thilo Bauch, Floriana Lombardi. Nature Communications. Vol.: 8, Article number: 2019. DOI: 10.1038/s41467-017-02069-z.




segunda-feira, 28 de dezembro de 2015

Como filmes finos supercondutores suportam fortes campos magnéticos (How Thin Film Superconductors Withstand Strong Magnetic Fields)




Campos magnéticos internos em filmes finos de MoS2 ajuda-os a suportar campos magnéticos externos de até 37 Tesla, dizem os cientistas.



Cientistas descobriram como a supercondutividade em filmes finos de dissulfeto de molibdênio (MoS2) pode, ao contrário de outros supercondutores, suportar campos magnéticos muito fortes. A descoberta poderia ser útil na fabricação de computadores quânticos.
          A supercondutividade é um fenômeno quântico no qual os elétrons formam pares e fluem com resistência zero. No entanto, fortes campos magnéticos quebram os pares de elétrons e destroem a supercondutividade.
         Pesquisadores liderados pelo professor Ye Jianting da Universidade de Groningen, descobriram que a supercondutividade em filmes finos de MoS2 pode resistir a um campo magnético de 37 Tesla. Era necessária uma explicação para o fenômeno e o professor K. T. Law da Universidade de Hong Kong resolveu o enigma.
         Law e seu aluno propuseram que a estrutura da rede dos filmes finos de MoS2 permite que os elétrons movam-se no material experimentando fortes campos magnéticos internos de cerca de 100 Tesla. Este tipo especial de campo magnético interno, em vez de prejudicar a supercondutividade, protege os pares de elétrons supercondutores dos campos magnéticos externos.
        A equipe de pesquisa chama este tipo de material de supercondutor ‘Ising’. Eles também previram que muitos outros supercondutores com estrutura de rede semelhante ao MoS2 pertenceriam a mesma família de supercondutor Ising.
         Além da capacidade de suportar um campo magnético forte, a equipe do professor Law salienta que pode ser utilizado para criar um novo tipo de partícula chamada férmions de Majorana. Estes férmions podem ser úteis na fabricação de computadores quânticos.
       “Muitas propriedades e aplicações de supercondutores Ising ainda devem ser descobertas”, disse Law. “Agora que entendemos o mecanismo de como certos materiais se tornam resistentes à interferência de campos magnéticos externos, podemos procurar materiais com características semelhantes às do MoS2. Estou certo de que iremos descobrir mais supercondutores Ising em breve”, acrescentou.






quarta-feira, 3 de dezembro de 2014

Físicos brasileiros propõem modelo experimental para detectar férmion de Majorana em supercondutores




Em 1938, Ettore Majorana, um físico italiano de 31 anos, desapareceu sem deixar vestígios. Seu orientador, Enrico Fermi, que naquele mesmo ano ganhou o prêmio Nobel de Física, o comparou ao inglês Isaac Newton (1643-1727), posicionando-o vários degraus acima dos maiores expoentes de uma época fértil em gênios científicos. As habilidades matemáticas de Majorana eram prodigiosas.


Costumava esboçar proposições teóricas sofisticadas em maços de cigarro, que, depois, amassava e jogava fora, classificando aqueles escritos como pueris. Em março de 1932, propôs, alguns meses antes do alemão Werner Heisenberg (1901-1976), um modelo do núcleo atômico como constituído por prótons e nêutrons. Mas, apesar da insistência de Fermi, recusou-se a publicar qualquer artigo a respeito.
Quando desapareceu, suspeitou-se de que havia sido sequestrado pelo regime fascista de Benito Mussolini, porque sabia demais. Depois, verificou-se que planejara meticulosamente a desaparição.
Outras hipóteses foram apresentadas: fugiu porque, sabendo do potencial destrutivo da energia nuclear, não queria ser obrigado a trabalhar para os fascistas na produção da bomba atômica; fugiu porque, movido por uma intensa aspiração mística, decidiu isolar-se em um mosteiro ou transformar-se em andarilho. Há suspeitas de que tenha se refugiado na Argentina, passando a ganhar a vida como engenheiro. Mas não existe prova conclusiva sobre quaisquer dessas suposições.
Dos poucos trabalhos que publicou, o mais famoso foi Teoria simmetrica dell’elettrone e del positrone (Teoria simétrica do elétron e do pósitron), datado de 1937. Nele, apresentou a hipótese de uma partícula que teria a si mesma como antipartícula. A existência do neutrino acabara de ser postulada por Fermi e Wolfgang Pauli, e Majorana sugeriu que o neutrino poderia ser essa partícula.
Genericamente, essa partícula hipotética, que é sua própria antipartícula, recebe o nome de férmion de Majorana. Oito décadas depois de sua proposição, o férmion de Majorana continua a suscitar forte interesse na comunidade dos físicos. As pesquisas atuais em relação a ele enfocam não apenas o neutrino, mas também quase-partículas constituídas por excitações em supercondutores.
“No contexto da matéria condensada [em que o número de constituintes do sistema (átomos, elétrons etc.) é extremamente elevado, produzindo interações muito intensas entre eles], os férmions de Majorana poderiam se manifestar não como partículas reais, a exemplo dos prótons ou dos elétrons, mas como quase-partículas, ou partículas aparentes, que descrevem o estado do supercondutor, disse o físico Antonio Carlos Ferreira Seridonio, professor do Departamento de Física e Química da Universidade Estadual Paulista (Unesp), no campus de Ilha Solteira (SP), à Agência FAPESP.




Um sistema considerado forte candidato a exibir os férmions de Majorana enquanto quase-partículas é o chamado “fio de Kitaev”. [Imagem: Dessotti et al. - 10.1063/1.4898776]




Seridonio é coautor do artigo “Probing the antisymmetric Fano interference assisted by a Majorana fermion”, recentemente publicado como matéria de capa pelo periódico Journal of Applied Physics.
O artigo propõe um modelo experimental para a obtenção do férmion de Majorana. Tal modelo foi concebido por um grupo de pesquisadores e pós-graduandos da Unesp em Ilha Solteira e em Rio Claro e da Universidade Federal de Uberlândia (UFU), liderados por Seridonio, Valdeci Mariano de Souza (Unesp-Rio Claro) e Fabrício Macedo de Souza (UFU).
O primeiro autor do artigo, Fernando Augusto Dessotti, é doutorando sob a orientação de Seridonio. E o segundo, o mestrando Luciano Henrique Siliano Ricco, tem o apoio da FAPESP em pesquisa que trata do tema da matéria publicada.
Um sistema considerado forte candidato a exibir os férmions de Majorana enquanto quase-partículas é o chamado “fio de Kitaev”, proposto pelo físico russo Alexei Kitaev (nascido em 1963), atualmente professor do California Institute of Technology (Caltech), nos Estados Unidos.
“Em 2001, trabalhando na Microsoft, Kitaev dedicou-se ao objetivo de encontrar uma unidade básica para a computação quântica [o qubit ou bit quântico], que fosse capaz de resistir a perturbações externas do meio, possibilitando assim a construção do computador quântico. O modelo apresentado por ele consistiu em um fio finito supercondutor. Quando tal fio se encontra em uma condição específica, chamada de fase topológica, seria possível isolar um majorana em cada uma de suas pontas. E esse par de quase-partículas comporia o bit quântico”, relatou Seridonio.
O artigo publicado por Seridonio e seu grupo no Journal of Applied Physics descreve uma via experimental para a detecção dessas quase-partículas. “Os componentes do aparato experimental que propomos já foram produzidos experimentalmente. Falta integrá-los. Acreditamos que é uma questão de tempo para que isso ocorra. E o nosso trabalho aponta um caminho para isso”, afirmou.
O aparato utiliza um interferômetro de elétrons (empregado no estudo do comportamento ondulatório dos elétrons) semelhante ao interferômetro de Bohm-Aharonov [idealizado no final de década de 1950 pelo físico norte-americano naturalizado brasileiro David Bohm (1917–1992) e pelo físico israelense Yakir Aharonov (1932), então seu orientando].
“Nossa ideia foi acoplar esse interferômetro a um fio de Kitaev na fase topológica. O transporte de elétrons no interferômetro ficaria afetado pelos majoranas presentes nas pontas do fio de Kitaev. E, por meio da alteração produzida nos espectros das ondas eletrônicas, seria possível caracterizar os majoranas”, explicou Seridonio.
“Para o futuro, utilizaremos o interferômetro proposto para explorar uma outra classe de majoranas, os que geram uma corrente de quase-partículas nas bordas de um supercondutor”, acrescentou o pesquisador.
O artigo Probing the antisymmetric Fano interference assisted by a Majorana férmion (doi: 10.1063/1.4898776), de F.A. Dessotti e colaboradores, pode ser lido em http://scitation.aip.org/content/aip/journal/jap/116/17/10.1063/1.4898776 .

Agência FAPESP



segunda-feira, 10 de novembro de 2014

Isolante topológico supercondutor (topological insulator goes superconducting)





Esquerda: filmes ultrafinos de Bi2Se3 epitaxialmente crescido na superfície (0001) do supercondutor monocristalino 2H-NbSe2 usando a técnica de epitaxia de feixe molecular (molecular beam epitaxy technique). Centro: curvas de intensidade ARPES e mapa de dispersão ARPES de alta resolução do filme Bi2Se3 sobre NbSe2 depois de "destapar" usando uma energia de fóton incidente de 50 eV (no detalhe). Direita: a direção da polarização de spin dos elétrons no nível de Fermi do supercondutor Bi2Se3. Cortesia: S-Y Xu


Físicos dos EUA e Taiwan dizem que encontraram a primeira evidência da supercondutividade no isolante topológico seleneto de bismuto graças às novas observações espectroscópicas. A descoberta não é apenas de fundamental importância para uma série de teorias de física da matéria condensada e de partículas, mas pode até ser explorada para construir no futuro qubits topológicos tolerantes a falhas.
Isolantes topológicos são materiais artificialmente construídos isolantes no volume da amostra, mas que podem conduzir eletricidade na superfície. Uma equipe de pesquisadores liderada por Zahid Hasan, da Universidade de Princeton, usando a técnica angle-resolved photoemission spectroscopy (ARPES), afirmam ter visto o “emparelhamento de Cooper” (a marca registrada da supercondutividade) nos elétrons que se encontram na superfície do isolante topológico Bi2Se3. ARPES é uma das formas mais diretas de estudar a estrutura eletrônica e supercondutividade em sólidos.
Supercondutividade é um fenômeno coletivo no qual os elétrons se movem em direções opostas superando a repulsão eletrostática para formar pares de Cooper abaixo de uma certa temperatura de transição. Estes pares podem condensar em um único estado quântico e mover-se sem resistência elétrica através do material supercondutor.
“Em supercondutores convencionais, elétrons de condução que se deslocam ao longo de uma determinada direção têm seus spins em ambas as direções, ‘up’ e ‘down’, e os dois tipos de elétrons podem emparelhar-se”, explica o membro da equipe Su-Yang Xu, também de Princeton. “Isolantes topológicos são diferentes. Os elétrons se movendo em uma direção deverão ter apenas elétrons com spin-up disponíveis para emparelhar-se, e aqueles que se movem na direção oposta só tem elétrons spin-down disponíveis. É por isso que as superfícies de isolantes topológicos são também chamadas de ‘half-Dirac-gas’ porque apenas metade dos elétrons está disponível para contribuir com a corrente elétrica de resistência zero. Além disso, as fortes interações dos pares de Cooper que existem em alguns supercondutores estão ausentes em isolantes topológicos e a supercondutividade nestes sistemas existe em um estado ‘fracamente interagente’. Fracamente interagente nesse contexto, significa que os elétrons não se repelem fortemente.”

Emparelhamento helicoidal de Cooper

Os pesquisadores mediram a energia cinética e a direção de spin dos elétrons ejetados de uma amostra de Bi2Se3 em um substrato de seleneto de nióbio (NbSe2). “O processo de fotoemissão nos fornece informações extremamente úteis sobre a estrutura eletrônica e propriedades de um material”, diz Xu, “e a técnica com resolução de spin fornece informações adicionais sobre como são configurados os spins dos elétrons no material”.
Graças às temperaturas ultrabaixas em que realizaram os experimentos, Hasan e seus colegas dizem que eles foram capazes de observar pela primeira vez o “emparelhamento helicoidal de Cooper” em um sistema eletrônico de Dirac, fazendo uso de uma coisa chamada momentum-resolved Bogoliubov quasiparticle spectrum do isolante topológico quando é colocado sobre um substrato de um supercondutor convencional como o NbSe2.

Férmions de Majorana e outra física exótica

A teoria prevê que partículas chamadas férmions de Majorana (partículas que são suas próprias antipartículas) poderiam ser feitas através da combinação de um supercondutor convencional com um isolante topológico. Uma série de outros aspectos fundamentais da física exótica também pode estar à espreita em tais estados de superfície no estado sólido.
Férmions de Majorana são previstos em física de alta energia, mas ainda não foram observados em experimentos de física de partículas. “Se eles forem encontrados na matéria condensada, como em um supercondutor topológico tipo half-Dirac-gas, eles podem ser usados para construir o famoso qubit topológico - o que nos ajudaria a fazer um computador quântico tolerante a falhas”, diz Xu. Isto porque férmions de Majorana - ao contrário dos familiares férmions de Dirac, como os elétrons - obedecem as “estatísticas não-Abelianas” e assim devem ser robustos ao ruído ambiental de fundo. Férmions de Majorana poderiam armazenar e transmitir informação quântica sem perturbação externa, o que é um dos principais desafios para quem tenta construir hoje um computador quântico prático e tolerante a falhas.

Testando a física de alta energia no estado sólido?

A supersimetria (outra teoria da física de alta energia) é outro exemplo interessante que ainda tem que ser testada em aceleradores de partículas. “Aqui, os bósons (partículas de spin inteiro) e férmions (partículas de spin semi-inteiro) podem ser convertidos um no outro em altas energias. Teóricos da matéria condensada dizem que ambas, a supersimetria e os férmions de Majorana, podem ser produzidos na mesma configuração do estado sólido - como o ‘spin-momentum locked’ half-Dirac gas que temos estudado”.
Até agora, todas as reivindicações de ver férmions de Majorana foram em sistemas de isolantes não-topológicos, mas um isolante topológica de Majorana seria uma partícula muito robusta, de longa duração.
Estimulado por suas observações, a equipe diz que agora está planejando uma técnica híbrida de espectroscopia de fotoemissão (combinação de espectroscopia de tunelamento e de transporte elétrico) para procurar um férmion de Majorana, e mais importante, as partículas de supersimetria (SUSYs) no componente helicoidal isolado dos pares de Cooper estudados no presente trabalho.
Embora nossos dados atuais não forneçam qualquer evidência para a supersimetria, esta é uma emocionante - e alguns diriam ambiciosa - direção futura que esperamos prosseguir graças a nossa identificação do emparelhamento helicoidal de Cooper, diz Xu.
A pesquisa está detalhada no artigo da Nature Physics.




segunda-feira, 13 de outubro de 2014

Na fronteira entre matéria e antimatéria: físicos descobrem partícula exótica (férmion de Majorana) dentro de materiais supercondutores (scientists find long-sought Majorana particle)






 O dispositivo é feito de um nanofio de índio coberto com um contato de ouro e parcialmente coberto com um contato supercondutor de nióbio. Os férmions de Majorana são criados no final do nanofio. Crédito: Copyright TU Delft 2012



Pesquisadores do TU Delft's Kavli Institute e da Foundation for Fundamental Research on Matter (FOM Foundation) conseguiram detectar pela primeira vez o férmion de Majorana, uma partícula que é um híbrido de matéria e antimatéria. A existência dessa partícula foi proposta pelo físico italiano Ettore Majorana. Leo Kouwenhoven, principal pesquisador do trabalho, causou grande agitação entre os cientistas em fevereiro, apresentando os resultados preliminares em um congresso científico. Agora, os cientistas publicaram sua pesquisa na revista Science.

Computador quântico e matéria escura

Férmions de Majorana são muito interessantes - não só porque a descoberta abre um novo e desconhecido capítulo da física fundamental; eles também podem desempenhar um papel na cosmologia. A teoria proposta pressupõe que a misteriosa “matéria escura”, que forma a maior parte do universo, é composta de férmions de Majorana. Além disso, os cientistas veem as partículas como blocos de construção fundamentais para o computador quântico. Ao contrário do computador quântico “comum”, um computador quântico baseado em férmions de Majorana é excepcionalmente estável e pouco sensível a influências externas.
       
Nanofio

        Pela primeira vez, cientistas no grupo de pesquisa de Leo Kouwenhoven conseguiram criar um dispositivo eletrônico em nanoescala no qual um par de férmions de Majorana “aparece” em uma das extremidades do nanofio. Eles fizeram isso através da combinação de um nanofio extremamente pequeno com um material supercondutor e um forte campo magnético. “As medições das partículas nas extremidades do nanofio não podem ser explicadas a não ser pela presença de um par de férmions de Majorana”, diz Leo Kouwenhoven.
        Teoricamente é possível detectar um férmion de Majorana com um acelerador de partículas. O atual Large Hadron Collider parece ser suficientemente sensível para essa finalidade, mas, de acordo com os físicos, há uma outra possibilidade: férmions de Majorana também podem aparecer em nanoestruturas adequadamente projetados. “O que há de mágico sobre a mecânica quântica é que uma partícula de Majorana criada desta forma é semelhante às que podem ser observadas em um acelerador de partículas, apesar de ser muito difícil de compreender”, explica Kouwenhoven. “Em 2010, dois grupos teóricos diferentes surgiram com uma solução usando nanofios supercondutores e um forte campo magnético. Através de pesquisas anteriores aqui na TU Delft já estávamos muito familiarizados com esses ingredientes.”


O físico italiano Ettore Majorana era um teórico brilhante, que mostrou grande visão sobre a física em uma idade jovem. Ele descobriu uma solução até então desconhecido para as equações das quais os cientistas quânticos deduzem partículas elementares: os férmions de Majorana. Praticamente todas as partículas teóricas previstas pela teoria quântica foram encontrados nas últimas décadas, com apenas algumas exceções, incluindo a partícula de Majorana e o bóson de Higgs. Mas a pessoa Ettore Majorana é tão misteriosa quanto a partícula. Em 1938, ele retirou todo o seu dinheiro e desapareceu durante uma viagem de barco a partir de Palermo para Nápoles. Se ele se matou, foi assassinado ou vivia sob uma identidade diferente ainda não é conhecido. Nenhum traço de Majorana jamais foi encontrado.






Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!