Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador Andreev bound states. Mostrar todas as postagens
Mostrando postagens com marcador Andreev bound states. Mostrar todas as postagens

sexta-feira, 31 de outubro de 2014

Forte campo magnético produz um estado supercondutor exótico (Superconductor finally goes with the FFLO)




Vesna Mitrović em seu laboratório

        Um fenômeno procurado há muito que permite a supercondutividade sobreviver mesmo em campos magnéticos muito fortes, foi visto pela primeira vez por uma equipe internacional de físicos. O “estado FFLO” da supercondutividade envolve a formação de entidades quânticas exóticas conhecidas como estados ligados de Andreev. Além de proporcionar uma visão mais aprofundada da supercondutividade, a descoberta também pode aprimorar nossa compreensão da física de partículas e estrelas de nêutrons, e até mesmo melhorar os sistemas de ressonância magnética (MRI).
        Supercondutividade e magnetismo são geralmente inimigos jurados. Supercondutores expulsam fracos campos magnéticos que passam através de um condutor normal, enquanto um campo magnético forte o suficiente destrói a supercondutividade. A supercondutividade convencional ocorre quando as vibrações em uma estrutura cristalina permite que os elétrons se liguem em conjuntos formando pares de Cooper que fluem através do material sem resistência. Os elétrons em cada par têm valores opostos do momento angular de spin - um com spin-up, outro com spin-down. No entanto, um forte campo magnético direciona os spins dos elétrons num mesmo sentido, perturbando o equilíbrio, destruindo os pares de Cooper e a própria supercondutividade.

Pares de elétrons não correspondentes

Contudo, em 1964, dois pares de físicos - Peter Fulde e Richard Ferrell, ao lado de Anatoly Larkin e Yuri Ovchinnikov - previram que certos materiais devem superconduzir, mesmo na presença de campos magnéticos muito fortes. Esse estado FFLO iria ocorrer como resultado dos pares de elétrons não combinados - tendo um momento angular finito em vez de zero – reunindo-se em bandas através de todo o material, fora do qual as correntes supercondutoras ainda poderiam fluir.


Elétrons não ligados fluindo com o estado FFLO

Nos últimos 50 anos, muitos grupos têm tentado testar essa ideia experimentalmente, e alguns têm encontrado evidências indiretas do estado FFLO - principalmente pela medição das propriedades macroscópicas de supercondutores para criar diagramas de fase detalhados dos materiais. Rolf Lortz e seus colegas da Universidade de Hong Kong, por exemplo, identificaram uma nova fase entre o supercondutor e as fases normais no composto orgânico κ-(BEDT-TTF)2Cu(NCS)2, que interpretaram como sendo o estado FFLO e que, eles descobriram, impulsionou o limite magnético (campo crítico HC) de 21 T para quase 30 T.
        No mais recente trabalho, Vesna Mitrović da Universidade Brown nos EUA, e colegas do Japão e do laboratório francês French National High Magnetic Field Laboratory (LNCMI) em Grenoble, encontraram evidências do estado FFLO em escala microscópica. A pesquisa explora o espectro de energia dos elétrons desemparelhados de um supercondutor, que têm uma energia mais elevada do que a variedade emparelhada. Este gap de energia tem um valor único ao longo de uma amostra de um supercondutor convencional, mas sua variação é prevista de uma região à outra dentro de um material na fase FFLO.

Quasepartículas supercondutoras

Mitrović e colegas observaram regiões dentro de folhas muito finas de κ-(BEDT-TTF)2Cu(NCS)2, onde o gap de energia vai a zero. Essas são regiões onde elétrons emparelhados e desemparelhados têm a mesma energia, e onde, portanto, é energicamente possível existirem elétrons desemparelhados. Estes elétrons desemparelhados são a melhor ideia de como “quasepartículas”, que existem em superposições quânticas complexas com tudo à sua volta, e, ao contrário de elétrons normais, podem superconduzir. Especificamente, os pesquisadores procuraram quasepartículas conhecidas como estados ligados de Andreev, que se assemelham a elétrons normais, cujos spins apontam na direção de um campo magnético aplicado.
        O experimento foi realizado no LNCMI, onde a ressonância magnética nuclear (RMN) foi usada para confirmar duas propriedades esperadas dos estados ligados de Andreev - e, portanto, a presença da fase de estado FFLO. A primeira, e mais importante, envolveu medir o tempo que levou para os elétrons mudarem sua rotação quando exposto a fortes campos magnéticos, uma característica que reflete o espectro de energia dos elétrons em toda a amostra. A segunda propriedade requer medidas da distribuição de spins dentro do material.
“Outros grupos têm realizado impressionante e importante trabalho, mostrando que em um alto campo magnético você entra em um novo estado”, diz Mitrović. “Mas eles não poderiam dizer com o que esse estado se parece. O objetivo do nosso trabalho foi olhar, e o que vemos é realmente muito impressionante.” Ela acrescenta que o trabalho pode vir a ser importante fora da física da matéria condensada, porque poderia ajudar os físicos de partículas identificarem uma forma de supercondutividade que envolve quarks com sabor desequilibrado, e em astrofísica poderia explicar como estrelas de nêutrons podem apresentar supercondutividade e ao mesmo tempo gerar enormes campos magnéticos.

Melhores sistemas de ressonância magnética

Lortz diz que a pesquisa fornece “um tipo diferente de importantes informações” ao obtido pelo seu grupo. Ele acrescenta que, em princípio, poderia levar à criação de ímãs supercondutores mais poderosos para sistemas de ressonância magnética porque o estado supercondutor persiste a campos mais altos. Enquanto o κ-(BEDT-TTF)2Cu(NCS)2 não é apropriado para fazer ímãs, Lortz acrescenta que a fase FFLO pode ser observada em materiais mais adequados no futuro.
Ted Forgan, da Universidade de Birmingham, que observou o estado FFLO no supercondutor CeCoIn5, diz que os resultados são “muito convincentes”. Mas ele ressalta que a RMN, ao fornecer dados microscópicos, não mostra a variação espacial diretamente. “Talvez a técnica high-field scanning tunnelling microscopy poderia mostrar um estado espacialmente modulado”, diz ele.
A pesquisa foi publicada na revista Nature Physics.






Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!