Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador H2S. Mostrar todas as postagens
Mostrando postagens com marcador H2S. Mostrar todas as postagens

sábado, 24 de outubro de 2020

Pesquisadores sintetizam material que é supercondutor em temperatura ambiente

 




 

Comprimindo sólidos moleculares simples como o hidrogênio a pressões extremamente altas, engenheiros e físicos da Universidade de Rochester criaram, pela primeira vez, um material que é supercondutor a temperatura ambiente.

       Ao estabelecer o novo recorde, Ranga Dias e sua equipe combinaram hidrogênio, carbono e enxofre para sintetizar fotoquimicamente um simples hidreto em uma célula de bigorna de diamante, um dispositivo de pesquisa usado para examinar quantidades minúsculas de materiais sob pressão extraordinariamente alta. O hidreto exibiu a supercondutividade em torno de 58°F a uma pressão de cerca de 39 milhões de PSI.

       A quantidade de material supercondutor criado pelas células de bigorna diamante é medida em picolitros — do tamanho de uma única partícula de jato de tinta.

       O próximo desafio, segundo Dias, é encontrar maneiras de criar materiais supercondutores em temperatura ambiente a pressões mais baixas, para que sejam viáveis de produzir em grande volume. Em comparação com os milhões de quilos de pressão criados nas células de bigorna de diamantes, a pressão atmosférica da Terra no nível do mar é de cerca de 15 PSI.

Poderosos eletroímãs supercondutores já são componentes críticos de trens maglev, ressonância magnética (MRI) e máquinas de ressonância magnética nuclear (RMN), aceleradores de partículas e outras tecnologias avançadas, incluindo supercomputadores quânticos.




       Mas os materiais supercondutores usados nos dispositivos funcionam apenas em temperaturas extremamente baixas, mais do que qualquer temperatura natural na Terra. Essa restrição torna cara a sua manutenção e muito caro para outras aplicações potenciais. “O custo para manter esses materiais em temperaturas criogênicas é tão alto que você não pode obter o benefício total deles”, diz Dias.

       Anteriormente, a maior temperatura para um material supercondutor foi alcançada no ano passado no laboratório de Mikhail Eremets do Instituto Max Planck, e no grupo Russell Hemley na Universidade de Illinois em Chicago.

       Nos últimos anos os pesquisadores exploraram óxidos de cobre e compostos à base de ferro como candidatos a supercondutores de alta temperatura. No entanto, o hidrogênio oferece um promissor bloco de construção.

       “Para ter um supercondutor de alta temperatura, você quer ligações fortes e elementos leves. Esses são dois critérios básicos”, afirma Dias. “O hidrogênio é o material mais leve, e a ligação de hidrogênio é uma das mais fortes. Teoricamente, o hidrogênio metálico sólido possui alta temperatura de Debye e forte acoplamento elétron-fônon, necessário para a supercondutividade a temperatura ambiente”diz Dias.

       No entanto, pressões extraordinariamente altas são exigidas para obter hidrogênio puro no estado metálico. Visando contornar essa dificuldade, Dias e colaboradores usam como alternativa materiais ricos em hidrogênio que imitam a fase de supercondutora do hidrogênio puro, e podem ser metalizados a pressões mais baixas.

       Primeiro eles combinaram ítrio e hidrogênio. O superhidreto de ítrio resultante exibiu supercondutividade a uma temperatura recorde de 12°F a uma pressão de cerca de 26 milhões de libras por polegada quadrada.

       Em seguida, o laboratório explorou materiais orgânicos covalentes ricos em hidrogênio. Esse trabalho resultou no hidreto carbonáceo de enxofre. “A presença do carbono é de importância equivalente aqui”, relatam os pesquisadores. Mais ‘ajustes composicionais’ dessa combinação de elementos podem ser a chave para alcançar a supercondutividade a temperaturas ainda mais altas, acrescentam.

 

 

Fonte: https://phys.org/news/2020-10-room-temperature-superconducting-material.html

 

 

Mais informações: https://www.nature.com/articles/s41586-020-2801-z.

 


sábado, 19 de janeiro de 2019

Impulsionando a supercondutividade para temperatura ambiente


Eva Zurek , Departamento de Química, Universidade de Buffalo, SUNY, Buffalo NY, EUA

Dois estudos independentes relatam a supercondutividade a temperaturas recordes em materiais ricos em hidrogênio sob extrema pressão.

Figura 1. Esquema (à esquerda) da bigorna de diamante usada para estudar o comportamento do LaH10 sob alta pressão. (Direita) Esboço da estrutura cristalina em forma do LaH10 responsável pela supercondutividade de alta temperatura observada por Hemley[2] e Eremets[3]. (Esquerda) APS/Alan Stonebraker; (Direita) E. Zurek, adaptado por APS/Alan Stonebraker.

     Em 2015, a compressão do sulfeto de hidrogênio a 150GPa, ou cerca de 40% da pressão encontrada no núcleo da Terra, rendeu um supercondutor de 203K [1]. Notavelmente, dois grupos independentes [2,3] relataram experimentos indicando que um hidreto de lantânio comprimido a 170-185GPa tem uma temperatura crítica de 250-260K [2,3].
     Em 1968, o físico Neil Ashcroft previu que o hidrogênio metálico deveria ter todas as propriedades necessárias para ser um supercondutor de alta temperatura, de acordo com a teoria de Bardeen-Cooper-Schrieffer (BCS) [4]. Infelizmente, a metalização do hidrogênio em experimentos de compressão mostrou-se extremamente difícil. Ashcroft previu ainda que certos sólidos ricos em hidrogênio poderiam se tornar metálicos a pressões mais baixas do que o hidrogênio elementar e que eles teriam as mesmas propriedades da supercondutividade de alta temperatura [5]. Essa hipótese catalisou a busca pela supercondutividade em hidretos sob altas pressões.
     Para estudar a supercondutividade nesses materiais sob gigantescas pressões, os pesquisadores precisam realizar experimentos em bigornas de diamante. Esses experimentos são caros, tecnicamente desafiadores e podem ser difíceis de interpretar. Além disso, as fases do material que são estáveis ​​sob alta pressão podem ser diferentes daquelas que sabemos ocorrer em condições atmosféricas. Como resultado, os cálculos baseados em mecânica quântica tornaram-se extremamente importantes para orientar esses experimentos, em particular por meio da identificação de compostos promissores [6].
     Na última década, essas técnicas teóricas e computacionais se concentraram em hidretos binários. Pesquisadores calcularam valores extremamente altos, alguns até superando a temperatura ambiente para hidretos contendo metais alcalino-terrosos ou metais de terras raras [7]. Em 2017, grupos liderados por Hemley [8] e Yanming Ma [9] previram que certos hidretos de terras raras com uma grande relação hidrogênio-metal se tornariam estáveis ​​a pressões alcançáveis ​​em bigornas de diamante. Esses materiais ricos em hidrogênio têm estruturas cristalinas que lembram as estruturas semelhantes a gaiolas. Um dos hidretos mais promissores, o hidreto de lantânio (LaH10), consiste de uma rede de hidrogênio feita de poliedros com faces quadradas ou hexagonais, com um átomo de metal de terras raras situado no centro de cada poliedro. Assumindo que este sistema pode ser descrito pela teoria BCS, os pesquisadores previram a sua temperatura crítica situada entre 270 e 290K a 200GPa [8,9].
     No início de 2018, o grupo de Hemley conseguiu sintetizar o LaH10 [10]. Agora, as equipes de Hemley [2] e Eremet [3] relataram assinaturas experimentais da supercondutividade no LaH10 sob pressões extremas. Para medir com precisão a resistência elétrica, os grupos tiveram que garantir contatos confiáveis ​​entre a amostra e os eletrodos e controlar as composições e condições da amostra (por exemplo, impedindo a formação de fases adicionais). O grupo de Hemley desenvolveu uma nova técnica de síntese na qual o LaH10 foi produzido in situ usando borano de amônia (NH3BH3) como fonte de hidrogênio. À medida que a amostra foi resfriada sob uma pressão de 185GPa, eles observaram uma queda dramática da resistência elétrica que indicou uma Tc de 260K. Um segundo conjunto de experimentos sugeriu que a Tc poderia chegar a 280K sob pressão de 200GPa. Medições de difração de raios-X sugeriram que a fase supercondutora poderia ser o LaH10 e descartou a possibilidade de que a queda de resistência elétrica tenha sido causada por uma transição estrutural induzida pela temperatura.
     A equipe de Eremets sintetizou o hidreto através de uma reação direta de lantânio elementar ou trihidreto de lantânio (LaH3) e hidrogênio. Eles observaram quedas acentuadas na resistência, da qual derivaram a Tc em função da pressão. Para o LaH10, o mais alto valor da Tc, 250K, foi medido a 170GPa. Outra fase não identificada do hidreto, que coexistiu com o LaH10 na mesma amostra, exibiu uma Tc de 215K [11]. A equipe de Eremets também observou duas assinaturas características da supercondutividade. Primeiro, a aplicação de um campo magnético reduziu a Tc, como esperado para um supercondutor BCS tipo II. Segundo, a Tc exibiu o chamado efeito isotópico - diminuiu quando o hidrogênio foi substituído por deutério.
     Esses dados são fortemente sugestivos de supercondutividade, mas para provar isso sem sombra de dúvida, seria necessário observar o efeito Meissner - a expulsão de um campo magnético de um material quando ele se torna supercondutor. Medir este efeito é, no entanto, um desafio: para o recordista anterior da Tc, o sulfeto de hidrogênio, o efeito Meissner só foi demonstrado vários anos após a descoberta de sua supercondutividade. Uma vez que as amostras de hidreto de lantânio são significativamente menores do que as amostras do sulfeto de hidrogênio, demonstrar o efeito Meissner para o LaH10 exigirá esforços experimentais substanciais.
     Mais trabalhos teóricos e experimentais serão necessários para identificar as múltiplas redes cristalinas contidas nas amostras. Os dados sugerem fortemente que uma delas é o LaH10, mas a identidade das outras estruturas permanece desconhecida. Esta informação será essencial para compreender a relação entre a estrutura do cristal e a supercondutividade e, possivelmente, revelar novas fases supercondutoras que possam ter uma Tc ainda maior. E o alto valor da Tc do LaH10 certamente motivará os experimentalistas a investigar sistemas similares, como o hidreto de ítrio, cuja previsão da Tc excede a temperatura ambiente [8,9].
     No campo da supercondutividade, a maioria das inovações foi inesperada, desafiando muitas vezes o conhecimento convencional da época. O caso do hidreto mostra que isso está mudando: cálculos teóricos podem ser usados para conceber racionalmente novos materiais que sejam de alta Tc, supercondutores do tipo BCS. Os avanços computacionais permitirão identificar outras espécies complexas que, ao contrário dos hidretos binários, como o LaH10, pode permanecer estável quando descomprimido. E novas técnicas para a síntese e caracterização de cristais permitirão o teste experimental de previsões teóricas. Graças a esse ciclo de retroalimentação entre teoria e experimento, poderemos em breve ter um supercondutor que trabalhe próximo à temperatura ambiente e a pressões que poderiam ser alcançadas em dispositivos muito mais simples que as bigornas de diamante, como as prensas usadas para comprimir pós em comprimidos farmacêuticos.



Referências
1. A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73 (2015).
2. M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).
3. A. P. Drozdov et al., “Superconductivity at 250 K in lanthanum hydride under high pressures,” arXiv:1812.01561.
4. N. W. Ashcroft, “Metallic hydrogen: A high-temperature superconductor?,” Phys. Rev. Lett. 21, 1748 (1968).
5. N. W. Ashcroft, “Hydrogen dominant metallic alloys: High temperature superconductors?,” Phys. Rev. Lett. 92, 187002 (2004).
6. E. Zurek and W. Grochala, “Predicting crystal structures and properties of matter under extreme conditions via quantum mechanics: The pressure is on,” Phys. Chem. Chem. Phys. 17, 2917 (2015).
7. E. Zurek and T. Bi, “High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective,” J. Chem. Phys. (to be published).
8. H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, “Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure,” Proc. Natl. Acad. Sci. U.S.A. 114, 6990 (2017).
9. F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119, 107001 (2017).
10. Z. M. Geballe, H. Liu, A. K. Mishra, M. Ahart, M. Somayazulu, Y. Meng, M. Baldini, and R. J. Hemley, “Synthesis and stability of lanthanum superhydrides,” Angew. Chem. Int. Ed. 57, 688 (2018).
11. A. P. Drozdov, V. S. Minkov, S. P. Besedin, P. P. Kong, M. A. Kuzovnikov, D. A. Knyazev, and M. I. Eremets, “Superconductivity at 215 K in lanthanum hydride at high pressures,” arXiv:1808.07039.





quarta-feira, 11 de novembro de 2015

O supercondutor que funciona na temperatura da Terra (The Superconductor That Works at Earth Temperature)






Pesquisadores descobriram um material que superconduz numa temperatura significativamente mais quente do que o ambiente mais frio da terra. Isso deve inaugurar uma nova era de pesquisa em supercondutividade.
       No ano passado, Mikhail Eremets e colaboradores fizeram uma afirmação extraordinária que o sulfeto de hidrogênio (H2S) superconduz à temperatura de -70 °C. Isso é cerca de 20 graus mais quente do que qualquer outro material já descoberto. Na época, os físicos foram cautelosos sobre o trabalho. A história da supercondutividade está repleta de afirmações dúbias de atividade de alta temperatura que mais tarde acabam por ser impossível de reproduzir. Nos meses seguintes, Eremets e colaboradores trabalharam duro para reunir as peças finais de provas conclusivas.
Existem essencialmente três características que os físicos procuram como prova de que um material é um supercondutor convencional. A primeira é uma súbita queda na resistência elétrica, quando o material é arrefecido abaixo de sua temperatura crítica. A segunda é a expulsão dos campos magnéticos de dentro do material, um fenômeno conhecido como efeito Meissner. A terceira é uma mudança na temperatura crítica quando átomos do material são substituídos por isótopos. Isso porque a diferença de massa isotópica faz com que a estrutura vibre de forma diferente, o que muda a temperatura crítica.
       Mas há outro tipo de supercondutividade que é muito menos compreendida. Trata-se de certas cerâmicas descobertas na década de 1980 que superconduzem à temperaturas de cerca de -110 °C, denominadas high-TC (alta temperatura crítica). Ninguém sabe exatamente como isso funciona, mas grande parte da pesquisa científica atual em supercondutividade tem incidido sobre estes materiais exóticos.
       Os trabalhos de Eremets e colaboradores talvez mudem isso. A maior surpresa sobre sua descoberta é que ela não envolve um supercondutor de alta temperatura. Em vez disso, o H2S é um supercondutor convencional do tipo que nunca tinha sido visto trabalhando a temperaturas superiores a 40 K. Eremets e sua equipe submeteram o material a pressões extremamente elevadas, equivalentes àquelas do centro da Terra. Ao mesmo tempo, eles conseguiram encontrar evidências de todas as características importantes da supercondutividade.
       Enquanto o trabalho experimental avança, os teóricos coçam a cabeça para explicar isso. Muitos físicos acreditavam que havia alguma razão teórica para supercondutores convencionais não funcionarem acima de 40 K. Mas, na verdade, não há nada na teoria que impede a supercondutividade a temperaturas mais elevadas.
       De fato, na década de 1960, o físico britânico Neil Ashcroft previu que o hidrogênio seria supercondutor a altas temperaturas em pressões elevadas, talvez até mesmo à temperatura ambiente. Sua ideia era que o hidrogênio é tão leve que deve constituir uma estrutura capaz de vibrar em frequências muito elevadas e, portanto, de supercondutores a altas temperaturas e altas pressões.
       A descoberta de Eremets parece ser uma demonstração dessa ideia. Ou, pelo menos, algo parecido. Existem numerosos aspectos teóricos que precisam ser resolvidos antes de os físicos afirmarem que possuem uma compreensão adequada do que está acontecendo. Este trabalho teórico está em curso.
       Agora, a corrida é para encontrar outros supercondutores que funcionem a temperaturas ainda mais elevadas. Um candidato promissor é o H3S. E, claro, os físicos estão começando a pensar sobre as aplicações. Existem inúmeros desafios na exploração deste material, não menos importante, porque ele existe em forma supercondutora apenas em pequenas amostras dentro de bigornas em alta pressão. Mas isso não impediu as especulações. “Esta descoberta é relevante não só na ciência dos materiais e matéria condensada, mas também em outras áreas que vão desde computação quântica à física quântica da matéria viva”, dizem Bianconi e Jarlborg.





domingo, 23 de agosto de 2015

Supercondutor quente detona recorde de temperatura


Redação do Site Inovação Tecnológica -  19/08/2015


O aparelho usado no experimento é incrivelmente simples: a pressão extrema é conseguida apertando-se os parafusos da bigorna, enquanto a amostra estudada fica comprimida entre dois diamantes superpolidos. [Imagem: Thomas Hartmann/MPIC]


Supercondutor quente
Em alguns campos, pesquisas exaustivas parecem se arrastar por anos sem que nada de muito significativo, ou realmente radical, apareça.
Até que, de repente, tudo parece acontecer ao mesmo tempo, com novidades a todo instante, pulando como pipocas da panela.
É o que está acontecendo agora no campo da supercondutividade.
Há poucos dias, uma equipe dos EUA e da China chegou muito próximo de demonstrar a supercondutividade a temperatura ambiente, graças à sintetização do estaneno, uma folha monoatômica de estanho.
Agora, uma equipe alemã, trabalhando em uma frente completamente diferente, descobriu como fazer que um material comum e malcheiroso superconduza a apenas -70º C - alguns até poderiam argumentar que isto já é temperatura ambiente, ainda que na Antártica.
O recorde anterior para um “supercondutor de alta temperatura” era -110º C, mas sempre envolvendo cerâmicas complexas, difíceis de obter e caracterizar, o que tem feito com que muitos comecem a duvidar das atuais teorias que tentam explicar a supercondutividade. Para a “supercondutividade convencional”, com materiais não complexos, o recorde de temperatura continuava na casa dos -234º C.

Gás vira metal, que vira supercondutor
Alexander Drozdov e Mikhail Eremets, do Instituto Max Planck de Química, na Alemanha, trabalharam com um material simples e muito comum, o sulfeto de hidrogênio (H2S), o gás responsável pelo malcheiro dos ovos podres.
Eles comprimiram o gás em uma bigorna de diamante até 1,6 milhão de vezes a pressão atmosférica, o suficiente para vê-lo transformar-se em um metal, e viram sua resistência à passagem da corrente elétrica desaparecer a meros 203,5 K, cerca de -70º C.



Os químicos acreditam que a passagem do H2S para H3S é crucial para o surgimento da supercondutividade. [Imagem: Defang Duan et al. - 10.1038/srep06968]



Supercondutores a temperatura ambiente
O experimento gerou uma nova onda de entusiasmo na comunidade científica em busca da supercondutividade a temperatura ambiente, sobretudo porque, há menos de um ano, um grupo de físicos chineses desenvolveu um novo modelo teórico que previa que o H2S poderia se tornar supercondutor a até -69º C quando, sob alta pressão, ele sofre uma transição para H3S.
E, neste campo, novos entendimentos sobre qual seria o gatilho que dispara a supercondutividade podem levar à busca por outros compostos que possam apresentar o mesmo comportamento em temperaturas cada vez mais altas.
“Não há limite teórico para a temperatura de transição dos supercondutores convencionais, e nossos experimentos dão-nos razões para termos esperança de que a supercondutividade pode até mesmo ocorrer a temperatura ambiente”, disse Eremets.
Enquanto os teóricos se debatem com os modelos e a interpretação dos novos dados, os experimentalistas vão continuar comprimindo outros materiais isolantes em busca de materiais que se livrem da resistência elétrica a temperaturas cada vez mais distantes da Antártica, rumo ao Equador, indicando que novas pipocas poderão pular da panela nos próximos meses.


Bibliografia:

Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Alexander P. Drozdov, Mikhail I. Eremets, I. A. Troyan, V. Ksenofontov, S. I. Shylin, Nature Physics. Vol.: Published online DOI: 10.1038/nature14964.


Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Defang Duan, Yunxian Liu, Fubo Tian, Da Li, Xiaoli Huang, Zhonglong Zhao, Hongyu Yu, Bingbing Liu, Wenjing Tian, Tian Cui. Nature Scientific Reports Vol.: 4, Article number: 6968. DOI: 10.1038/srep06968.






segunda-feira, 6 de julho de 2015

Efeito Meissner no supercondutor H2S (Magnetism measured for superconducting hydrogen sulfide)



Novas observações apoiam o estudo que sugeriu que compostos à base de hidrogênio submetidos a pressões extremamente altas podem se tornar supercondutores a altas temperaturas.
          Em dezembro de 2014, Mikhail Eremets e colegas do Instituto Max Planck mostraram que o sulfeto de hidrogênio (H2S) sob pressão extrema poderia superconduzir a 190 K (-83 °C) a pressões de 150 GPa.
          Em um novo estudo, o grupo reportou um trabalho semelhante em que eles observaram o mesmo efeito a uma temperatura ainda mais elevada de -70 °C. Eles também foram capazes de observar o efeito Meissner, uma característica dos supercondutores onde o material expele o fluxo magnético após a temperatura reduzir abaixo da temperatura crítica - o ponto em que ele se torna um supercondutor.
A equipe usou um magnetômetro altamente sensível para medir o campo magnético de amostras de H2S sob alta pressão, à medida que a temperatura foi lentamente aumentada por alguns graus acima do zero absoluto. O sinal aumentou repentinamente quando a temperatura passou de -70 °C.
          Ainda não está exatamente claro como compostos ricos em hidrogênio se comportam assim a pressões extremas, mas o grupo prevê que eventualmente estes sistemas podem superconduzir à temperatura ambiente.



sábado, 16 de maio de 2015

Explicado o segredo do supercondutor H2S (Secret of record-breaking superconductor explained)



A superfície de Fermi no sulfeto de hidrogênio sob 200 GPa de pressão. (Cortesia: Ion Errea, Matteo Calandra et al.)


A supercondutividade convencional pode ocorrer em temperaturas muito mais altas do que o esperado, de acordo com cálculos feitos por uma equipe internacional de físicos liderada por Matteo Calandra do Instituto IMPMC em Paris. Os pesquisadores desenvolveram um modelo teórico para explicar o recorde da supercondutividade relatada no ano passado para o sulfeto de hidrogênio (H2S), o qual a equipe atribui a interações relativamente simples semelhantes aquelas que ocorrem em supercondutores convencionais de baixa temperatura.
        Supercondutores de baixa temperatura são bem descritos pela teoria BCS, em que interações com fônons levam ao emparelhamento de elétrons em pares de Cooper que viajam através do material sem resistência. A maior temperatura crítica (TC) para esta classe de supercondutores é apenas 39 K (para o MgB2).
        Apesar da grande quantidade de pesquisa feita sobre supercondutores de alta temperatura, grande parte da física subjacente à sua supercondutividade permanece desconhecida. Esse mistério foi aprofundado no final do ano passado quando Mikhail Eremets e colaboradores descobriram que quando submetido a uma pressão extremamente alta (200 GPa), o H2S tem uma TC de 190 K (Veja aqui). Enquanto a TC de supercondutores de alta temperatura pode ser aumentada pela aplicação de pressão, o H2S parece destinado a tornar-se o novo recordista se a medida for confirmada.
        A coisa estranha sobre o H2S é que - ao contrário de outros supercondutores de alta temperatura – ele não existe em um estado magnético, e, portanto, se assemelha mais a um supercondutor convencional. Essa observação levou Calandra e colegas a usar a teoria BCS como ponto de partida para os seus cálculos.
        As interações entre os elétrons e as vibrações dos átomos de hidrogênio são a chave para a compreensão da supercondutividade no H2S. O hidrogênio tem uma massa muito pequena e vibra em frequências relativamente elevadas. Estes modos de alta frequência interagem fortemente com elétrons e deve resultar em um supercondutor com uma TC muito alta. Quando Calandra e colegas utilizaram a teoria BCS para calcular a TC do H2S em alta pressão, eles obtiveram um valor de 250 K - muito maior do que o observado 190 K.
        A equipe acredita que a TC real é um pouco menor, porque a teoria BCS assume que os átomos vibram no material como osciladores harmônicos simples. No entanto, átomos leves como hidrogênio sofrem oscilações anarmônicas mais complicadas, e isso pode enfraquecer significativamente as interações que criam os pares de Cooper. Depois de levar em conta os efeitos anarmônicos em seus cálculos, os pesquisadores calcularam uma TC muito mais realista de 194 K.

Aumentando a pressão
        Os cálculos também sugerem que a interação entre os efeitos anarmônicos e outras propriedades do material resulta numa TC constante entre 200-250 GPa. Observar esse efeito no laboratório seria um bom teste para os cálculos, Calandra diz não ter conhecimento de quaisquer medições acima de 200 GPa. Ele ressalta que a experiência de 200 GPa foi extremamente difícil de fazer, e que Eremets e colegas são provavelmente os únicos pesquisadores capazes de estudar o H2S a pressões mais elevadas.
        “A descoberta de Eremets e nosso trabalho teórico fundamentam o caminho para a busca da supercondutividade de alta TC em hidretos e materiais à base de hidrogênio em geral”, diz Calandra. “Nesta classe de materiais deve ser possível encontrar supercondutores com uma TC da mesma ordem (ou superior) do que o H2S a alta pressão”, acrescenta.
        Elisabeth Nicol da Universidade de Guelph no Canadá está entusiasmada com os resultados. “O surpreendente é que podemos ter um supercondutor de elétron-fônon que opera a 190 K”, diz ela. Nicol, que não estava envolvido nos cálculos, acrescenta que “Embora tecnicamente a teoria da supercondutividade em si não estabeleça um limite na TC, o consenso foi que os supercondutores de elétron-fônon têm baixa TC. Claramente, estamos aprendendo que ainda há possibilidades para a supercondutividade convencional”.
        O trabalho está publicado na Physical Review Letters.






segunda-feira, 22 de dezembro de 2014

Supercondutividade bate recorde sob alta pressão (superconductivity record breaks under pressure)




Os cupratos até agora detém o recorde de temperatura mais elevada, mas uma nova classe de materiais pode mudar isso. (Phil Degginger / Alamy)


Por quase 30 anos, a busca de um supercondutor à temperatura ambiente tem se concentrado em materiais exóticos conhecidos como cupratos, que podem transportar correntes sem perder energia em temperaturas de até 164 K, ou -109 °C. Mas os cientistas dizem ter superado esse recorde usando uma molécula simples, o sulfeto de hidrogênio (H2S). Quando uma pequena amostra do material é submetida a pressões próximas às do núcleo da Terra, os pesquisadores dizem que o material superconduz a 190 K (-83 °C).
        “Se o resultado for reproduzido, será muito chocante”, diz Robert Cava, químico na Universidade de Princeton. “Seria uma descoberta histórica”.
        De acordo com a teoria BCS (John Bardeen, Leon Cooper e Robert Schrieffer), vibrações nos átomos de um cristal podem levar elétrons a formar “pares de Cooper”, que podem fluir através do cristal sem resistência. A teoria BCS foi desenvolvida na década de 1950, mas a maioria dos físicos acredita que ela não pode explicar a supercondutividade em cupratos, que foi descoberto em 1986, ou em ferro-pnictídeos, descobertos em 2006.
        Os cientistas esperam que a teoria BCS possa guiar a busca por outros tipos de supercondutores de alta temperatura, particularmente em materiais que contenham elementos leves como o hidrogênio. Estes geram vibrações mais rápidas que criam laços mais fortes entre os pares de elétrons.
        A recente pesquisa baseia-se na obra de Neil Ashcroft (físico da Universidade de Cornell), que estudou o potencial supercondutor de compostos de hidrogênio. Mais especificamente, ele investigou uma recente previsão teórica de físicos chineses que o sulfeto de hidrogênio deve superconduzir acima de 80 K quando exposto a uma pressão de 1,6 milhões atm. Essa alta pressão comprime os elétrons dos pares de Cooper tornando menos provável de serem destruídos por flutuações térmicas.
        Mikhail Eremets e colegas do Instituto Max Planck colocaram uma amostra de sulfeto de hidrogênio, cerca de um centésimo de milímetro de diâmetro, entre as pontas de duas bigornas de diamante e eletrodos. Em seguida, mediram a forma como a resistência elétrica do material foi alterada à medida que o sistema resfriava até próximo do zero absoluto. Eles descobriram que, sob uma pressão de 1,8 milhões de atm, a resistência cai repentinamente em torno de 190 K, o que sugere uma transição supercondutora.
Os pesquisadores atribuem essa temperatura “crítica” maior do que o esperado à repartição de ácido sulfídrico em moléculas que contêm um número relativamente maior de átomos de hidrogênio. Estas moléculas seriam supercondutoras nesta temperatura.
        Os pesquisadores relatam várias evidências para apoiar a sua reivindicação de supercondutividade de alta temperatura, incluindo a de ter visto uma temperatura de transição muito mais baixa (90 K), quando usaram deutério (mais pesado) no lugar do hidrogênio. Os átomos mais pesados, segundo eles, impediria a supercondutividade, diminuindo as vibrações de cristal.
Caso seja confirmado por outros grupos, este resultado representaria um enorme aumento na temperatura crítica obtida por meio das interações entre os elétrons e as vibrações de cristal (supercondutor convencional tipo BCS). O recorde atual é de 39 K para o MgB2.
        Alexander Gurevich, teórico da Universidade Old Dominion, concorda que os resultados representam “um avanço significativo na investigação da supercondutividade”, mas para o momento permanece cauteloso. Ele diz que os autores ainda têm de demonstrar uma das marcas da supercondutividade, o efeito Meissner, em que um material 'expulsa' linhas do campo magnético quando esfria até o estado supercondutor. “Espero que este trabalho estimule outros grupos para reproduzir o experimento prontamente”, acrescenta.
        Quanto à utilidade prática do trabalho, Eremets e seus colegas dizem que agora será possível encontrar temperaturas críticas elevadas em outros materiais contendo hidrogênio, como fulerenos à base de carbono ou hidrocarbonetos aromáticos. Estes, dizem, podem ser transformados em supercondutores, misturando pequenas frações de outros elementos, no lugar da aplicação de alta pressão. Cava, no entanto, adverte que ainda é muito cedo para considerar possíveis aplicações. “Se uma coisa dessas poderia ocorrer em pressão ambiente para outros hidretos é uma pergunta que é melhor não especular a respeito”, diz ele.






Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!