Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador aplicações dos supercondutores. Mostrar todas as postagens
Mostrando postagens com marcador aplicações dos supercondutores. Mostrar todas as postagens

terça-feira, 30 de junho de 2015

Supercondutores e turbinas eólicas: Uma brisa fresca em energias renováveis (Superconducting direct drive technology for next generation wind turbines: A fresh breeze in renewables)




A empresa Envision Energy, líder mundial no fornecimento de soluções inteligentes em energia, anunciou que pretende instalar um gerador supercondutor em uma de suas turbinas eólicas mais avançadas. O produto chamado gerador EcoSwing é projetado para uma turbina de acionamento direto de 3 MW e fornecerá energia suficiente para abastecer 1.000 famílias.
Anders Rebsdorf, chefe do Centro Global de Inovação da Envision, comentou: “Após anos de pesquisa, a supercondutividade finalmente amadureceu a um nível onde pode ser considerada para testes e demonstrações em uma turbina eólica de tamanho real. O gerador será um dos sistemas supercondutores mais ambiciosos em termos de densidade de torque, e estamos orgulhosos de liderar este importante projeto”.
É o primeiro gerador supercondutor projetado para uma turbina eólica e promete uma mudança de patamar no desenvolvimento do gerador. A principal vantagem do EcoSwing é uma economia de peso de mais de 40% em comparação com geradores convencionais. Outra vantagem é a drástica redução no uso de terras raras – um material escasso e de preços oscilantes.
       Anders Rebsdorf acrescentou sobre o impacto do mercado: “Os potenciais para um gerador leve e competitivo são verdadeiramente emocionantes. A tecnologia EcoSwing pode ser um avanço importante em nossa busca para reduzir o custo das energias renováveis”.
       A tecnologia EcoSwing aborda aspectos multidisciplinares de investigação e desenvolvimento e promove avanços em supercondutividade industrial, criogenia e conversão de energia. Para lidar com a implementação da tecnologia, o consórcio irá realizar estudos de risco e avaliar aspectos regulatórios. Após o teste minucioso em um laboratório certificado, o gerador está previsto para operar por mais de um ano em uma moderna turbina eólica de grande porte na Dinamarca.

Sobre a supercondutividade

Os supercondutores são capazes de conduzir eletricidade sem resistência. Eles são, portanto, altamente complementares às tecnologias de maior eficiência energética como um substituto para o cobre. Em comparação com o cobre, pode transportar 100 vezes a densidade de corrente, tornando os equipamentos leves e compactos. Em razão da enorme redução de volume, o uso de supercondutores torna esta tecnologia altamente competitiva para máquinas convencionais.





sábado, 27 de junho de 2015

Skate voador e trens super-rápidos - Por que precisamos de supercondutores? (Hoverboards and super-fast trains – why we need superconductors)





Se os físicos forem capazes de atingir a meta da supercondutividade a temperatura ambiente em um material fácil de moldar em fios, novas e importantes tecnologias surgiriam logo em seguida.
        Os materiais podem ser divididos em duas categorias com base na sua capacidade de conduzir eletricidade. Metais, como cobre e prata, permitem que os elétrons se movam livremente transportando carga elétrica. Isolantes, tais como a borracha ou madeira, mantém seus elétrons com força e não permitem que uma corrente elétrica flua.
Novas técnicas de laboratório para resfriar materiais a temperaturas próximas do zero absoluto (-273 °C) foram desenvolvidas por físicos no começo do século 20, o que deu início a uma investigação sobre como a capacidade de conduzir eletricidade muda em condições tão extremas.
        Em alguns elementos simples, como mercúrio e chumbo, percebeu-se algo notável - abaixo de uma determinada temperatura estes materiais podem conduzir eletricidade sem resistência.
        Nas décadas posteriores a esta descoberta os cientistas encontraram comportamento idêntico em milhares de compostos, de cerâmica à nanotubos de carbono.
        Vamos pensar neste estado da matéria não como um metal ou um isolador, mas uma terceira categoria exótica, um supercondutor.
        Um supercondutor conduz eletricidade perfeitamente, isto significa que uma corrente elétrica em um fio supercondutor continuaria a fluir em círculos por bilhões de anos, nunca se degradando ou se dissipando.


Elétrons na pista rápida
        Em nível microscópico os elétrons em um supercondutor se comportam de forma muito diferente daqueles em um metal normal.
        Pares de elétrons supercondutores se unem, o que lhes permite viajar com facilidade a partir de uma extremidade à outra de um material.
        O efeito é um pouco como uma faixa exclusiva em uma rodovia movimentada. Elétrons individuais ficam presos no trânsito, esbarram em outros elétrons e obstáculos enquanto fazem seu caminho. Elétrons emparelhados, por outro lado, tem prioridade para viajar na pista rápida através de um material, capaz de evitar o congestionamento.
        Supercondutores já possuem aplicações fora do laboratório em tecnologias como a Ressonância Magnética (MRI). Aparelhos de ressonância magnética utilizam supercondutores para gerar um grande campo magnético que dá aos médicos uma forma não invasiva para obter imagem do interior do corpo de um paciente.



Aparelho RMI


Ímãs supercondutores também possibilitaram a recente detecção do bóson de Higgs no CERN, dobrando e focando feixes de partículas em colisão.
Uma propriedade interessante e potencialmente útil dos supercondutores surge quando eles são colocados perto de um ímã forte.
O campo magnético faz com que as correntes elétricas fluam espontaneamente sobre a superfície de um supercondutor, que dão origem à sua própria, contrariando o campo magnético. O efeito é que o supercondutor levita acima do ímã, suspenso no ar por uma força magnética invisível.
        O que impede uma utilização mais generalizada destes materiais é o fato de que os supercondutores só operam em temperaturas muito baixas.
        Nos elementos simples, por exemplo, a supercondutividade desaparece em apenas 10 K, ou -263 °C. Em compostos mais complexos, como o óxido de ítrio bário cobre (YBa2Cu3O7), a supercondutividade pode persistir a temperaturas mais elevadas, até 100 K (-173 °C).
        Embora isso seja uma melhoria em relação aos elementos simples, ainda é muito mais frio do que a noite mais fria do inverno na Antártida.
        Cientistas sonham em encontrar um material que as propriedades supercondutoras possam ser usadas em temperatura ambiente, mas é uma tarefa desafiadora.
        O aumento da temperatura tende a destruir a cola que une os elétrons em pares supercondutores, o que, em seguida, leva o material de volta ao seu estado metálico chato. Um dos grandes desafios é o fato de que nós ainda não entendemos muito sobre esta cola, exceto em alguns casos limitados.


De superátomo para o supercondutor
Uma nova pesquisa da Universidade do Sul da Califórnia deu um novo passo no sentido de melhorar a nossa compreensão de como a supercondutividade surge.
        Em vez de estudar a supercondutividade em amostras volumétricas grandes, como fios, Vitaly Kresin e seus colaboradores conseguiram isolar e examinar pequenos aglomerados de algumas dezenas de átomos de alumínio de cada vez.
Estes pequenos aglomerados de átomos podem atuar como um “superátomo”, compartilhando elétrons de uma maneira que imita um único átomo gigante.
        O que é surpreendente é que as medições destes clusters revelam o que pode ser a assinatura do emparelhamento do elétron persistindo por todo o caminho até 100 K (-173 °C).
        Esta temperatura ainda é muito baixa, mas é 100 vezes maior do que a temperatura supercondutora de um pedaço de fio de alumínio.
        Por que um pequeno punhado de átomos superconduz a uma temperatura muito mais elevada do que os milhões de átomos que formam um fio?
        Os físicos têm algumas ideias, mas o efeito é muito pouco explorado, e poderia revelar-se uma forma interessante de evolução na busca da supercondutividade em altas temperaturas.



Trem MagLev


        Com a supercondutividade em temperatura ambiente, os dispositivos que usam eletricidade se tornariam consideravelmente mais eficientes e consumiriam menos energia. O transporte de eletricidade por longas distâncias se tornaria muito mais fácil, o que é particularmente útil para aplicações de energias renováveis ​​- e alguns propuseram cabos supercondutores gigantes que ligariam a Europa com fazendas de energia solar no norte da África.
        O fato de que os supercondutores levitam acima de um ímã forte também cria possibilidades eficientes, trens de ultra-alta velocidade que flutuam acima de uma faixa magnética, muito parecido com prancha de Marty McFly em “De Volta para o Futuro”.
        Engenheiros japoneses experimentaram a substituição das rodas de um trem com grandes supercondutores que seguram as carruagens alguns centímetros acima da pista.
        A ideia funciona, em princípio, mas sofre do fato de que os trens precisam levar tanques dispendiosos de hélio líquido com eles, a fim de manter frios os supercondutores.
        Muitas tecnologias de supercondutores irão provavelmente permanecer na prancheta, ou muito caras para implementar, a menos que um supercondutor a temperatura ambiente seja descoberto.
        É apenas possível que os avanços feitos pelo grupo de Kresin pode marcar esta jornada.





sexta-feira, 26 de junho de 2015

Lexus cria skate voador como o de “De Volta para o Futuro 2”




Quem nunca quis ser Marty McFly e fugir de bandidos em cima de um skate voador? O objeto mais desejado pelos amantes da trilogia De Volta para o Futuro sempre pareceu impossível de ser criado... até hoje.
       A Lexus, fabricante de carros de luxo que pertence à Toyota, postou um vídeo em seu site com um protótipo de um hoverboard. O vídeo é curto e mostra a prancha, chamada SLIDE, pairando acima de uma pista (que parece ser de concreto, mas pode até ser de aço pintado).
       Segundo o site da empresa, o hoverboard da Lexus usa a levitação magnética para se movimentar sem atrito. Como outros modelos de skate voador que usam magnetismo para levitar, o hoverboard da marca deve funcionar apenas em superfícies de metal.





       Além disso, o vídeo mostra o skate voador soltando uma fumaça, que lembra uma tecnologia já vista no passado: a levitação quântica. De acordo com a Lexus, o SLIDE utiliza nitrogênio líquido para refrigerar os supercondutores e ímãs da prancha, o que torna possível a levitação.
       O skate é feito de bambu e um material que a Lexus descreve apenas como “high tech”. Pela textura, parece ser fibra de carbono. O design caprichado lembra os carros da marca.
       As imagens no site não mostram o usuário em cima do skate voador. Desse modo, não podemos ter certeza se a prancha realmente funciona. Mas a empresa afirma que sim.
       O vídeo pode até ser um truque promocional da Lexus, como a propaganda do HUVrtech, um skate falso criado por uma empresa que não existe. Verdade ou não, nós ficamos animados com a possibilidade.




quinta-feira, 25 de junho de 2015

Universidade de Houston lança planos para o Instituto Supercondutor (UH Launches Plans for Superconductor Manufacturing Institute)


Instituto aceleraria a comercialização de supercondutores de alta temperatura




A Universidade de Houston lança planos para um Instituto Avançado de Manufatura de Supercondutor (ASMI), destinado a acelerar a comercialização de supercondutores de alta temperatura.
       Venkat Selvamanickam, professor de engenharia mecânica da UH, será o investigador principal para um planejamento de concessão de 500.000 mil dólares do National Institute of Standards and Technology (NIST). A concessão será utilizada para desenvolver um consórcio liderado pela indústria para ultrapassar os obstáculos técnicos que têm limitado a fabricação de supercondutores, bem como para desenvolver um plano de negócios para o instituto.
       Selvamanickam também é diretor do Applied Research Hub at the Texas Center for Superconductivity na UH, que desenvolve fios supercondutores de alta performance, com o apoio do Departamento de Energia, Escritório de Pesquisa Naval, Laboratório de Pesquisa do Exército, da National Science Foundation, o estado norte-americano do Texas e da indústria.
       A Universidade de Houston foi um dos 16 beneficiários da concessão entre 118 candidatos em um processo de seleção competitiva.
       O chefe do escritório de energia da UH, Ramanan Krishnamoorti, destaca o papel da universidade em avanços fundamentais de supercondutores de alta temperatura nos últimos 25 anos: “Sob a liderança do Dr. Selvamanickam, com os nossos parceiros do ASMI, prevejo uma revolução na fabricação escalável de baixo custo de supercondutores de alta performance”.
       Os defensores do instituto, incluindo empresas de destaque na indústria de supercondutores, passaram quase dois anos preparando o terreno para o ASMI em um esforço liderado pela UH catalisada por Rathindra Bose, então vice-presidente da UH para pesquisa e transferência de tecnologia. Selvamanickam disse que os próximos 18 meses serão usados para construir um consórcio de indústria, academia e outros parceiros para desenvolver planos e enfrentar as barreiras para o baixo custo, alto volume de produção, garantia de qualidade e testes de confiabilidade. O desenvolvimento da força de trabalho e integração da tecnologia em infraestrutura existente também será abordada.
       Selvamanickam disse que a Energy Research Park, criada em 2010 perto do campus principal voltada para a indústria e investigação universitária de projetos relacionados, seria um local ideal para o instituto, embora a decisão final será feita por membros do consórcio.
       Leves e potentes, dispositivos supercondutores são usados ​​em energia, saúde e transporte, oferecem vantagens sobre a tecnologia convencional, incluindo o aumento da eficiência e redução das emissões de gases de efeito estufa. Por exemplo, eles podem economizar até 5% de eletricidade em motores elétricos e equipamentos de transmissão e distribuição.
       Selvamanickam disse que o consórcio irá determinar como lidar com os obstáculos técnicos para a comercialização completa dos supercondutores. O grupo também vai estabelecer um plano de negócios, enquanto que o instituto seria iniciado com financiamento federal, que se destina a tornar-se autossustentável.
       Sua experiência com supercondutores, e a de outros pesquisadores do Centro de Supercondutividade Texas, pode guiar o consórcio.
       “Mas não é o que eu acho que é importante”, disse Selvamanickam. “É o que a indústria precisa.”
       Os Estados Unidos têm cinco Institutos Avançados de Produção, mas nenhum deles envolve tecnologia de supercondutores. Nenhum dos consórcios de planejamento financiados em 2014 lidam com a tecnologia de supercondutores.





domingo, 21 de junho de 2015

Fios de eletrificação supercondutores em teste no Japão (Superconducting electrification wires on test in Japan)




O Instituto de Pesquisas Tecnológicas Railway (RTRI) do Japão está reivindicando a primazia mundial após concluir com sucesso testes com fios supercondutores no sistema de eletrificação de sobrecarga de uma linha operacional de passageiros.
        Os testes foram realizados em 20 quilômetros da linha ferroviária Sunzu Izuhakone de Mishima para Shuzenji, que é eletrificada a 1.5 kV dc.
        O fio supercondutor foi usado para ligar os transformadores ac-cc a uma subestação para o sistema de abastecimento de tração, e o cabo foi resfriado a -196 °C.
        O RTRI diz que em função da baixa resistência elétrica dos cabos supercondutores, importantes economias de energia são possíveis e a estabilidade da tensão pode ser aumentada. Esta é uma vantagem particular em sistemas de eletrificação de corrente contínua, porque a tensão cai à medida que a distância a partir da subestação aumenta. Isso pode limitar a eficácia dos sistemas de travagem regenerativa, que só são plenamente eficazes se houver outro trem nas proximidades para usar a energia gerada pela frenagem. Com a maior estabilidade atual, os freios regenerativos podem operar de forma mais eficaz.





sexta-feira, 19 de junho de 2015

Levitação e magnetismo


O projeto brasileiro do MagLev, trem de passageiros que funciona por meio da tecnologia de levitação magnética, envolve importantes conceitos de física. Professor explica na CH os fenômenos que permitem a esse veículo se mover sem tocar nos trilhos.

Por: Beto Pimentel

Publicado em 28/05/2015 | Atualizado em 28/05/2015


Cientistas holandeses já fizeram um sapo levitar com o auxílio de um campo magnético gerado por uma espiral. (foto: Cortesia Lijnis Nelemans/ High Field Magnet Lab/ Radboud University Nijmegen)


       “Wingardium leviosa”, o encanto da levitação, é uma das primeiras magias que os alunos de Hogwarts aprendem a conjurar na famosa série de livros que narra as aventuras do aprendiz de bruxo Harry Potter. Mas, no mundo dos ‘trouxas’ (o mundo real), levitar requer um pouco mais de engenho: é preciso exercer alguma força de baixo para cima naquilo que se quer fazer levitar, compensando a força da gravidade.
       Um livro pousado sobre uma mesa está levitando: como ele não a atravessa nem sobe em direção ao teto, seu peso, então, está sendo compensado por outra força, para cima, de mesma intensidade, a qual denominamos ‘normal’.
       Porém, a real natureza da força ‘normal’ é a repulsão entre cargas elétricas de mesmo sinal. Quando a atração gravitacional puxa o livro em direção à mesa, os elétrons das camadas externas dos átomos da superfície do livro repelem e são repelidos pelos elétrons das camadas mais superficiais da mesa. E é essa repulsão simultânea de ‘zilhões’ de elétrons que constitui a força normal. Assim, o livro efetivamente flutua sobre um ‘colchão’ de elétrons.
       A força elétrica cai com o quadrado da distância; por isso, tanto a repulsão entre os prótons (positivos) do livro e aqueles da mesa quanto a atração entre os prótons de um corpo e os elétrons do outro são insignificantes para compor a força ‘normal’, pois essas cargas estão separadas por ‘grandes’ distâncias: em média, um núcleo é 100 mil vezes menor que o átomo.
       Além da repulsão eletrostática entre os elétrons, entra em cena também o princípio de exclusão de Pauli – homenagem ao físico austríaco Wolfgang Pauli (1900-1958). Esse princípio da mecânica quântica (teoria que lida com os fenômenos atômicos e subatômicos) proíbe que os elétrons do livro e os da mesa ocupem o mesmo estado – dito de forma simples, impede que ocupem ‘o mesmo lugar no espaço’ –, dando origem a outra força repulsiva de curto alcance entre os elétrons.
       Mas o livro não levita ‘de verdade’, certo? De fato, não. Se assim fosse, nosso cotidiano estaria repleto de levitação, até ao caminharmos pela rua! Trata-se apenas do que chamamos forças ‘de contato’. Algo semelhante dá origem ao atrito. Ao empurrarmos o livro para um lado, percebemos que é preciso fazer uma força para vencer o atrito com que os elétrons da superfície microscopicamente irregular da mesa tentam empurrá-lo de volta à posição original.

Levitação... de verdade

Então, para fazer um corpo levitar de verdade (sem aspas), precisaríamos elevá-lo a uma distância considerável – pelo menos, alguns milímetros –, para ficarmos livres do atrito com a superfície. Aí, sim, ao aplicarmos nele uma pequena força, ele se movimentaria sem atrito – e a única limitação seria a resistência do ar, relevante só para grandes velocidades.
Mas como obter aquela elevação? Poderíamos, por exemplo, amplificar a repulsão eletrostática: se a carga elétrica (de mesmo sinal) de dois corpos for suficientemente grande, a força de repulsão entre eles faria um deles levitar sobre o outro.
Porém, qualquer contato acidental poderia descarregar um dos corpos, diminuindo ou eliminando a força e, assim, interrompendo a levitação. Além disso, para valores muito altos de carga, o próprio ar passaria a conduzir eletricidade, e surgiriam pequenas (ou grandes!) centelhas, que drenariam a carga dos corpos eletrizados, cessando o efeito.
Um modo mais seguro de obter o mesmo resultado seria usar, em vez da força elétrica, a força magnética. Nos ímãs, polos de mesma natureza se repelem, e polos opostos se atraem. E, se a intensidade dessa repulsão for grande, um ímã pode fazer o outro levitar.
Há, claro, um problema de estabilidade: qualquer pequeno desvio do alinhamento entre os dois ímãs destruiria o equilíbrio. Mas isso pode ser resolvido com arranjos estáveis de vários ímãs, como comprovam os vários trens de levitação magnética atualmente em operação no mundo, inclusive no Brasil.
De fato, nem seria necessário usar dois ímãs. Bastaria um ímã e, por exemplo, um bloco de material ferromagnético, pois o campo magnético do ímã magnetizaria o material, transformando-o em um segundo ímã (figura 1). O problema, nesse caso, é que a força entre ambos seria atrativa. Portanto, para que houvesse levitação, o material ferromagnético teria que estar por baixo do ímã, em vez de por cima.



Um material ferromagnético, na presença de um campo magnético (no caso, induzido por um eletroímã), transforma-se em um ímã temporário. (ilustração: Luiz Baltar)


       Materiais diamagnéticos – que são repelidos por campos magnéticos – também poderiam ser alinhados para produzir a levitação, pois a magnetização os transformaria em um ‘ímã invertido’, levando à repulsão magnética. Porém, em geral, isso requer campos magnéticos muito intensos.

Eletroímãs e supercondutores

Os chamados eletroímãs também permitem gerar levitação. Quando um fio condutor é percorrido por uma corrente elétrica, ele cria em torno de si um campo magnético. Se o fio for enrolado, formando uma ou mais espiras, as linhas do campo magnético se assemelham às de um ímã permanente – daí, o termo eletroímã. Dependendo do sentido em que a corrente percorre a espiral, o polo norte é produzido em um ou em outro lado da espiral (figura 2).


Dependendo do sentido da corrente elétrica, o polo norte é produzido num ou noutro lado da espiral. (ilustração: Luiz Baltar)


       Usando esse efeito, cientistas holandeses já fizeram levitar um sapo e outros bichos pequenos, pois a água do corpo dos animais é formada por moléculas polares, que apresentam comportamento diamagnético. Mas, para isso, é preciso campos magnéticos imensos, ou seja, correntes elétricas muito altas percorrendo as espirais.
       O uso de materiais supercondutores – que se comportam como diamagnéticos ideais – possibilita a levitação com campos magnéticos comparativamente baixos. O problema, no entanto, é manter o supercondutor a temperaturas muitíssimo baixas (cerca de -200°C!).
       Uma coisa é fazer levitar. Outra, porém, é mover o trem. A solução engenhosa para o problema é o motor de indução linear. A ideia básica consiste em manipular o sentido da corrente elétrica dos eletroímãs colocados ao longo dos trilhos. Cada um desses eletroímãs ora atrai um ímã preso ao trem – quando o ímã se aproxima dele –, ora o repele – quando o ímã acaba de passar por ele. Desse modo, o trem é continuamente impelido para a frente.
       É, sem dúvida, uma sincronia complexa, mas é só uma questão de manipular convenientemente as correntes nos eletroímãs. Esse tipo de arranjo – usado, por exemplo, para puxar para cima os carrinhos de montanhas-russas modernas – permite controlar a corrente nos eletroímãs, para atingir não só forças de tração intensas, mas também grandes acelerações. A Nasa (agência espacial dos EUA) já está testando um foguete cujo primeiro estágio seria substituído por um sistema semelhante, barateando o lançamento de grandes cargas para o espaço.


Beto Pimentel
Colégio de Aplicação
Universidade Federal do Rio de Janeiro





quarta-feira, 17 de junho de 2015

Duplicando a eficiência com a supercondutividade


Avanços tecnológicos tornaram o aquecimento por indução alimentada por Corrente Contínua (CC), uma alternativa comercialmente viável em algumas aplicações, quando comparado ao aquecimento por indução por Corrente Alternada (CA) convencional.

O aquecimento por indução convencional CA tem sido utilizado na indústria desde os anos 20. Em 1990, um novo conceito emergiu para o aquecimento por indução por CC com o uso de poderosos eletromagnetos. As tecnologias de cabos magnéticos e o acionamento de motores disponíveis naquela época, entretanto, não permitiram a incorporação econômica do conceito. A partir do surgimento comercial dos cabos supercondutores de alta temperatura (high-temperature superconductors - HTS) e dos avanços em acionamentos a estado sólido, este conceito de quase 20 anos de existência torna-se agora um produto comercialmente viável.


Princípios de Funcionamento

O aquecimento por indução depende de correntes parasitas induzidas para aquecer um objeto condutor. Quando um material condutor é exposto a um campo magnético de tempo variável, correntes elétricas – correntes parasitas – são induzidas no material. Em um aquecedor de tarugo por indução convencional, uma bobina eletromagnética feita de cobre envolve o tarugo metálico (Figura 1). Quando uma corrente alternada é aplicada à bobina de cobre, um campo eletromagnético é gerado e, como conseqüência, correntes parasitas são induzidas no tarugo aquecendo-o devido a sua resistência – fenômeno denominado Efeito Joule.





A bobina eletromagnética é geralmente feita de tubulação de cobre resfriada a água, uma vez que a alta corrente na bobina de excitação de cobre engendra em perdas ôhmicas e, por este motivo precisa ser resfriada para prevenir que se derreta. O aquecimento da bobina de cobre é a principal fonte de perda de energia nesta abordagem. Esta perda de energia é dada pela proporção das resistências da bobina de cobre e do tarugo de metal. Uma vez que a bobina de cobre e um metal não ferroso apresentam resistividade muito similares, a energia é dividida de forma equivalente entre eles. Este efeito é ampliado pelo fato de sermos obrigados a posicionar a bobina de indução o mais próxima possível do tarugo, desta forma o condutor recebe aquecimento adicional do tarugo já aquecido. Por este motivo, a eficiência do aquecedor por indução convencional CA para o aquecimento de alumínio ou cobre atinge apenas os 50% ou menos. Além da pouca eficiência dos aquecedores por indução convencionais CA, o usuário necessita providenciar compensação VAR considerável para o circuito oscilante, a fim de aumentar o fator de potência e reduzir perdas das utilidades. Finalmente, esses circuitos requerem ajustes nas alterações de dimensões do tarugo, ligas e potência de aquecimento.
        Todas essas lacunas não se aplicam aos arranjos do supercondutor conforme descrito na Figura 1. Em um aquecedor por indução supercondutora CC, supercondutores muito eficientes eletricamente são utilizados para a criação de um grande campo magnético CC. A supercondução é um fenômeno que ocorre quando certos materiais são resfriados para temperaturas baixas, resultando em grandes correntes elétricas que fluem praticamente sem resistência. Por este motivo, são necessários menos de 200 W de energia para criar um campo magnético para aquecedores por indução CC. O campo permanece CC e não apresentará variações, entretanto, a peça precisará mover-se para que sejam criadas correntes parasitas. Assim, rota-se o tarugo. A rotação induz correntes parasitas no tarugo, o qual trabalha em movimento oposto ao da rotação. Este é também o princípio do freio magnético por indução. O grande torque de travagem é superado pelo uso de motores grandes e eficientes (exemplo: tamanho de 200 kW -400 kW). A partir da rotação do tarugo, a energia utilizada pelos motores é transferida para o tarugo, o qual é aquecido por correntes parasitas. A fonte de energia, portanto, não está na bobina que produz o campo magnético, porém nos eficientes motores. Toda energia utilizada para fazer rotar o tarugo é transferida para seu aquecimento. As poucas perdas se resumem à eletrônica, ao sistema de acionamento de motores, bem como quanto ao sistema de resfriamento do indutor. Porém o resultado total do maquinário quanto a eficiência energética é superior a 80%. O consumo típico para o aquecimento de alumínio é de 150 kWh por tonelada métrica de tarugos aquecidos nesta configuração, a qual é ainda melhor se comparado com a utilização de fornos a gás altamente eficientes.


Vantagens do Aquecedor por Indução HTS

Além da óbvia vantagem quanto à significativa eficiência em energia se comparada ao aquecimento por indução convencional, há outras vantagens em relação a esta inovadora abordagem, como qualidade do produto, repetibilidade e facilidade na operação, detalhadas a seguir.


Vantagens quanto à Qualidade do Produto

Nos aquecimentos por indução convencionais de 50-60 Hz, as correntes parasitas encontram-se basicamente localizadas na superfície do tarugo, devido ao fenômeno denominado “efeito superficial”, o qual é compreendido como uma intensa função da frequência. A penetração da corrente parasita aumenta na medida em que a frequência diminui ou que o campo magnético aumenta, resultando em um aquecimento mais uniforme. O aquecimento por indução convencional geralmente depende de uma linha de frequência de 50-60 Hz, ao passo que a abordagem do tarugo em rotação aqui descrita utiliza uma velocidade de rotação de aproximadamente 240-600 RPM, a qual corresponde a 4-10 Hz. Os benefícios do aquecimento mais profundo estão ilustrados nos resultados experimentais apresentados na Figura 2.





Na Figura 2, mostramos os resultados de um experimento utilizando termopares e furos em um tarugo de latão. Um dos termopares está localizado na linha central do tarugo, enquanto o outro está localizado bem próximo à superfície. Durante o aquecimento, o tarugo é paralisado quatro vezes até atingir os 675 ºC. A cada parada, realiza-se a leitura e o registro dos dois termopares. Conforme demonstrado, os dois termopares registram a mesma temperatura, até mesmo para o latão, que possui condutividade térmica muito inferior se o compararmos ao alumínio ou ao cobre. Em um sistema convencional de aquecimento por indução, a superfície apresenta-se mais quente que o centro durante o aquecimento (devido ao efeito superficial mencionado anteriormente), tornando-se necessário o encharque do tarugo para que alcance o equilíbrio térmico. No sistema de indução por rotação do tarugo, ilustrado graficamente na Figura 3, o encharque não é necessário, desta forma o aquecimento e a capacidade de processamento acontecem de forma mais rápida.





Vantagens na Repetibilidade

Além do aquecimento mais uniforme, a técnica do tarugo em rotação descrita acima proporcionou resultados com temperaturas possivelmente repetíveis de tarugo a tarugo. Isto se deve ao fato de que a uniformidade das temperaturas radial e axial é estabelecida, de imediato, durante o processo de aquecimento e não após a remoção do tarugo do forno. Desta forma, conforme demonstrado na Figura 4, a variação de temperatura do tarugo é reproduzível a +/- 4 ºC no comprimento do tarugo e de tarugo a tarugo. A figura também ilustra a capacidade do aquecedor em criar duas zonas de temperatura no interior do tarugo – uma zona mais quente na parte frontal e outra mais fria na parte de trás. Ademais, apesar de não demonstrado na figura, a temperatura linear estreita-se cerca de 1 ºC/cm.





Vantagens na Produção e no Funcionamento

A máquina é muito simples mecanicamente, apresentando fáceis procedimentos de instalação e mínimos requisitos quanto à manutenção se comparada aos aquecedores convencionais por indução CA. Além do potencial elétrico, a máquina CC utiliza somente um sistema hidráulico para fornecer pressão de pinçamento dos motores ao tarugo e simples e pequenos resfriadores de água para os trocadores de calor nas unidades de refrigeração. É importante notar que não há necessidade de compensação de potencial reativo para a administração do fator de potência como nas máquinas de indução convencionais. Ademais, tarugos de diferentes comprimentos podem ser aquecidos sem quaisquer ajustes adicionais de bobinas ou fator de potencia, além de não comprometerem em eficiência. A câmara de aquecimento não contém partes complexas em movimento para o transporte do tarugo e os acionadores, tanto quanto as bobinas, são completa e termicamente blindados para protegerem-se do tarugo aquecido. Finalmente, o magneto supercondutor é durável e não há necessidade de reposição ao longo da vida da máquina, pois não é exposto ao calor ou a vibrações. Por este motivo, não é preciso fazer a manutenção da bobina, considerada questão de prioridade para as máquinas convencionais.


Máquina em Destaque

A máquina ilustrada na Figura 5 foi entregue em julho de 2008 para uma empresa comercial de extrusão de alumínio em Minden, Alemanha. As características funcionais mais gerais estão dispostas a seguir:

- Capacidade: 2.2 toneladas/hora (48 tarugos/hora) alumínio
- Tamanho do tarugo: 7 polegadas (178mm) x 27 polegadas (690mm)
- Temperatura máxima: 520 ºC
- Potência de acionamento: 360 kW
- Potência da Bobina: < 200 W
- Consumo de Energia: < 150 kWh/t





O coração do sistema é um magneto supercondutor, o qual está contido em um recipiente termicamente isolado denominado criostato. O criostato mantém a bobina refrigerada. Os magnetos supercondutores e os criostatos de aço são tecnologias muito maturadas utilizadas em inúmeras aplicações industriais, bem como na área médica, como, por exemplo, em máquinas de MRI, sistemas de detenção NMR etc. Acima do magneto localiza-se uma pequena caixa contendo o refrigerador. Trata-se de um item comercialmente disponível, pronto para o uso, que, ao conectar-se com a linha de força, cria um ambiente frio para o magneto. É o mesmo princípio de funcionamento de um refrigerador doméstico. O magneto cria um campo magnético, o qual penetra em duas câmaras de aquecimento termicamente isoladas, no interior das quais encontram-se tarugos em rotação. Os motores de qualquer dos lados do tarugo fornecem a energia de rotação. Esses motores podem escorregar para dentro ou para fora, a fim de acomodar tarugos de diferentes cumprimentos. Eles possuem flanges que seguram o tarugo durante a rotação sem produzir qualquer dano ou deformação. A simplicidade é um dos pontos-chave sobre esta máquina. O único item a ser aquecido é o tarugo. Nenhum componente crítico é exposto a altas cargas de aquecimento, vibrações ou qualquer outra influência potencialmente danosa. Os principais componentes são os motores, tratando-se de tecnologia muito maturada; os refrigeradores, os quais são também bastante desenvolvidos; e o magneto supercondutor, mantido em segurança em um robusto compartimento de aço. Os requisitos para a manutenção são fáceis e mínimos.


Resumo

A tecnologia dos supercondutores tem sido aplicada na produção de uma nova geração de aquecedores por indução de não-ferrosos, com tempos mais curtos de aquecimento e eficiência em dobro quando em comparação aos aquecedores por indução convencionais. Um elemento chave destas máquinas singulares é a rotação da peça. Os Aquecedores por Indução Supercondutores, encontrados em tamanhos de 0.25 MW de razão térmica revolucionam o aquecimento de tarugos de alumínio, cobre e latão anterior à extrusão – reduzindo à metade a demanda por energia, bem como os custos operacionais. As bobinas por indução são fabricadas a partir de material supercondutor avançado, arrefecido com máquina compactada e estruturada com poder de refrigeração a 30 K, com alta corrente CC que implica em um nível de perdas praticamente ínfimo. Com o intuito de criar o efeito de aquecimento por indução, o tarugo é colocado em rotação em um campo eletromagnético de alta potência – A variação da velocidade é determinada pelo tamanho do tarugo e pelo tipo de material. Além de dobrar a eficiência operacional, o Aquecedor por Indução Supercondutor requer pouca manutenção e apresenta vida funcional durável, devido às cargas térmicas não convencionais. Pela mesma razão, a troca de ferramentas é mais rápida e mais segura. Desta forma, o resultado aponta para uma melhora quanto à produção, flexibilidade e custos operacionais.


Para maiores informações: contatar Larry Masur, Ph.D. da Zenergy Power Inc., 379 Oyster Point Boulevard. Suite 1, South San Francisco, CA; Tel: +1781-783-8501; e-mail: Larry.Masur@zenergypower.com, web:





Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!