Aplicações da Supercondutividade - O skate voador da Lexus

segunda-feira, 19 de outubro de 2015

A supercondutividade promove a magnetização (Superconductivity trained to promote magnetization)





Na spintrônica, a informação é codificada através do spin do elétron, o qual pode ser direcionado ao longo ou contra determinado eixo. Crédito: Universidade de Hamburgo


Sob certas condições, a supercondutividade, que é incompatível com o magnetismo, pode promover a magnetização. Natalya Pugach, pesquisador russo da Lomonosov Moscow State University, descobriu este efeito ainda não explicado com seus colegas britânicos, cujo grupo foi chefiado pelo Professor Matthias Eschrig. Eles sugerem que técnicas baseadas neste efeito podem acelerar futuros supercomputadores baseados na spintrônica.
A equipe estudou as interações entre a supercondutividade e a magnetização, a fim de compreender como controlar o spin dos elétrons. Na microeletrônica tradicional, a informação é codificada através das cargas elétricas. Na eletrônica de spin ou spintrônica, a informação é codificada através do spin do elétron, que pode ser dirigido ao longo ou contra um determinado eixo.
       “Dispositivos supercondutores de spintrônica exigem muito menos energia e emitem muito menos calor. Isso significa que esta tecnologia irá permitir criar supercomputadores muito mais econômicos e estáveis”, explica Natalya Pugach.
       O principal obstáculo ao desenvolvimento destes dispositivos é que os spins dos elétrons e de outras partículas carregadas são muito difíceis de controlar. Os resultados desta pesquisa indicam que supercondutores podem ser úteis no processo de transporte de spin, e ferromagnéticos podem ser utilizados para controlar as rotações.
       Supercondutores são muito sensíveis a campos magnéticos fortes que podem até destruir a supercondutividade, embora supercondutores expulsem campos magnéticos completamente. É quase impossível fazer supercondutores comuns e materiais magnéticos interagirem entre si, devido às suas direções opostas de ordenamento magnético: em sistemas de armazenamento magnético, o campo magnético organiza os spins em uma direção, mas o par de Cooper em supercondutores têm spins no sentido oposto.
       “Meus colegas experimentaram dispositivos chamados válvulas de spin supercondutoras. Elas se parecem com um ‘sanduíche’ feito de nanocamadas de material ferromagnético, supercondutor e outros metais. Ao mudar a direção da magnetização, é possível controlar a corrente no supercondutor. A espessura das camadas é crucial, porque no caso do supercondutor espesso, é impossível observar qualquer efeito interessante”, explica Natalya Pugach.
       Durante os experimentos, os cientistas bombardearam as amostras com múons (partículas que se assemelham aos elétrons, mas são 200 vezes mais pesados) e analisaram sua dispersão. Este método tornou possível entender como a magnetização prossegue em diferentes camadas da amostra.
       A válvula de spin consistia de duas camadas ferromagnéticas de cobalto, uma camada supercondutora de nióbio com uma espessura de cerca de 150 átomos e uma camada de ouro. No experimento, os pesquisadores descobriram um efeito inesperado: quando as direções de magnetização em duas camadas ferromagnéticas não são paralelas, a interação entre essas camadas e a camada supercondutora induz a magnetização na camada de ouro, saltando sobre o supercondutor. Quando os cientistas mudaram as direções de magnetização nas duas camadas, tornando-as paralelas, este efeito quase desapareceu, a intensidade do campo diminuiu 20 vezes.
       “Este efeito foi inesperado. Nós ficamos muito surpresos ao descobrir isso. Anteriormente, nós tentamos explicar os resultados com um padrão de distribuição de magnetização conhecido, mas em vão. Temos algumas hipóteses, mas nós ainda não temos nenhuma explicação completa. Não obstante, este efeito nos permitiu usar um novo método de manipulações com spins”, diz Natalya Pugach.
       É bem possível que a descoberta levará a conceitualmente a novos elementos em spintrônica. De acordo com Natalya Pugach, tecnologias supercondutoras de spintrônica podem ajudar a construir supercomputadores e servidores poderosos, minimizando o consumo de energia e emissões de calor de supercomputadores atuais.
       “As tecnologias de computador são baseados em semicondutores, que são bons para computadores pessoais. Mas quando você usa esses semicondutores para construir supercomputadores, que produzem calor e ruído, eles exigem sistemas de refrigeração poderosos. A spintrônica poderia resolver todos esses problemas”, Natalya Pugach conclui.








Nenhum comentário:

Postar um comentário

Seu comentário será avaliado e só será exibido após aprovação.

Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!