Aplicações da Supercondutividade - O skate voador da Lexus

sexta-feira, 26 de janeiro de 2018

Intel apresenta processador quântico com 49 qubits

Redação do Site Inovação Tecnológica -  22/01/2018



Processadores quânticos da Intel: com 7, 17 e, agora, à direita, com 49 qubits supercondutores. [Imagem: Walden Kirsch/Intel]


A Intel apresentou um processador quântico de 49 qubits, acertando em cheio o limite teórico que vem colocando entraves para os computadores e simuladores quânticos.
O processador foi batizado de Tangle, em homenagem a um lago de mesmo nome no Alasca e uma referência à temperatura criogênica que os qubits supercondutores precisam para funcionar.
Como existem vários desafios para a miniaturização dos qubits supercondutores, a Intel anunciou também que está fazendo progressos nos qubits de spin, nos quais as informações são guardadas na direção de rotação de elétrons individuais, um campo onde computação quântica e spintrônica se confundem.
Os qubits spintrônicos se parecem com um transístor que opera com um único elétron, sendo similares em vários aspectos aos transistores convencionais. Isso significa que eles podem ser miniaturizados usando a tecnologia tradicional da microeletrônica e serem fabricados por processos comparáveis. A Intel anunciou que já desenvolveu um fluxo de fabricação de qubits de spin usando sua tecnologia de processo de 300 mm.
Infelizmente, a empresa não deu quaisquer detalhes sobre o desempenho do seu processador com qubits supercondutores e nem adiantou com quantos qubits de spin seus engenheiros estão trabalhando. Sem informações, analistas da indústria acreditam ser seguro dizer que outros participantes dessa corrida pela computação quântica, como IBM e Google, estão à frente.
A gigante dos processadores eletrônicos, às voltas com um bug que deverá lhe custar milhões de dólares na Justiça, achou melhor desconversar: “Acreditamos que serão necessários de cinco a sete anos antes que a indústria consiga lidar com os problemas de engenharia e provavelmente será necessário um milhão ou mais qubits para obter relevância comercial,” disse Mike Mayberry, diretor do Intel Labs.
Segundo a empresa, um processador quântico de teste de 49 qubits é um marco importante porque permitirá avaliar e melhorar as técnicas de correção de erros e simular problemas computacionais reais.



quinta-feira, 14 de dezembro de 2017

Pesquisa abre rota para a supercondutividade fotônica



Resultado de experimentos no Departamento de Física, achado inédito foi saudado pela comunidade científica internacional




Aparato de detecção do par de fótons: observação em temperatura ambiente Cassiano Rabelo / UFMG



O fenômeno conhecido como Par de Cooper, em que elétrons se agrupam aos pares, condição que elimina a resistência elétrica e transforma materiais em supercondutores, foi detectado também em fótons, por pesquisadores da UFMG, em parceria com teóricos da Universidade Federal do Rio de Janeiro (UFRJ). O trabalho teve grande repercussão internacional, uma vez que abre campo para estudos sobre supercondutividade fotônica, capaz de ser alcançada em temperatura ambiente, ao passo que a eletrônica é obtida em condições extremas e de difícil reprodução.
O artigo Photonic counterparts of Cooper Pairs, publicado neste mês na revista de maior prestígio entre físicos – Physical Review Letters –, confirma a repetição do resultado em testes com mais de uma dezena de materiais, entre os quais, água, vidro, quartzo e diamante. O trabalho, abordado em matéria de capa da edição 2.001 do Boletim UFMG, é fruto de investigações que geraram a tese de Filomeno de Aguiar Júnior e a dissertação de Arthur Patrocínio Pena, sob orientação do professor Ado Jorio, do Departamento de Física da UFMG.
Cauteloso com o achado, Ado Jorio ressalta que o efeito obtido na supercondutividade eletrônica decorre de milhões de pares de elétrons naquele estado, capazes de produzir grandes campos magnéticos, com aplicações macroscópicas. “Utilizando dois detectores ultrassensíveis, conseguimos provar que os fótons estavam sendo gerados e se propagando em pares, mas medimos pares de Cooper ainda isolados, não agrupados aos milhares”, explica.
Além disso, pondera o coordenador do grupo, embora a supercondutividade eletrônica tenha aplicações de alto impacto, a exemplo de aparelhos de ressonância magnética e alguns trens de alta velocidade, ainda não é possível saber se uma supercondutividade de fótons teria aplicações tão relevantes. Segundo ele, é cedo para pensar em efeitos como supertransparência e supercondutividade luminosa.

Repercussão 
O trabalho, entretanto, foi recebido com entusiasmo pela comunidade científica. Tão logo foi divulgado pelo Massachusetts Institute of Technology (MIT), dos Estados Unidos, às vésperas da publicação, o artigo repercutiu em periódicos de alto impacto como Nature, Science e Russia News Today. A versão francesa da enciclopédia Wikipedia acrescentou resultados do artigo ao verbete Supraconductivité, em que indaga se existe um equivalente fotônico para a supercondutividade.
“Constatamos que a observação dos pares fotônicos à temperatura ambiente exige condições específicas, isto é, em materiais com átomos leves e ligações muito fortes, como aqueles que contêm carbono”, diz o pesquisador. Segundo ele, os componentes dos pares, tanto os eletrônicos quanto os de fótons, têm de trocar informações entre si por meio de vibração. Se o meio está vibrando demais, é como se houvesse muito ruído no sistema, o que atrapalha a comunicação. Por isso, na supercondutividade de elétrons, é preciso ter temperaturas baixíssimas, mais de 100 graus abaixo de zero, o que equivale a baixa vibração e, portanto, pouco ruído. 
Desse modo, as condições para a supercondutividade elétrica são muito restritas – não é possível, por exemplo, ter em casa uma rede elétrica de supercondutores, porque não existe supercondutor à temperatura ambiente. “Os materiais supercondutores usam nitrogênio líquido, alguns precisam de hélio líquido, sistemas que funcionam a baixíssimas temperaturas, isto é, uma condição muito extrema, muito difícil de ser obtida”.
Embora o fenômeno fotônico possa ser observado até em temperatura ambiente, por enquanto, as descobertas feitas pelo grupo brasileiro abrem mais questionamentos do que campos de aplicação, afirma Ado Jorio. “Pelo estágio de desenvolvimento do trabalho, ainda não se deve superdimensionar o efeito”, pondera. Ele acrescenta, entretanto, que a divulgação do artigo abre uma corrida entre grupos de pesquisa de todo o mundo, para fazer avançar o conhecimento sobre o assunto. “Provavelmente muita gente vai trabalhar nesse tema, iniciado com uma pesquisa totalmente brasileira”, afirma. A aquisição dos equipamentos usados nos experimentos foi viabilizada por financiamento da Finep, do CNPq e da Fapemig.
Ado Jorio explica que o trabalho resulta de projeto de união de duas áreas da Física: ótica quântica e ciência de materiais. “São dois campos muito distintos que, quando conversam, produzem grandes novidades”, afirma. 


ArtigoPhotonic counterparts of Cooper Pairs
RevistaPhysical Review Letters 
Autores: Ado Jorio e Carlos Henrique Monken (professores da UFMG), Filomeno de Aguiar Júnior e Arthur Patrocínio Pena (alunos da UFMG), André Saraiva, Reinaldo de Melo e Souza, Marcelo F. Santos e Belita Koiller (UFRJ)




segunda-feira, 11 de dezembro de 2017

Supercondutividade deve-se ao nióbio, não ao seu composto

Com informações da Agência Fapesp -  28/11/2017


Os filamentos de coloração branca correspondem à fase minoritária, com cerca de 98% de nióbio e 2% de boro, responsável pela supercondutividade. Já as regiões acinzentadas, em maior fração volumétrica, correspondem ao monoboreto de nióbio propriamente dito.[Imagem: F. Abud et al. - 10.1103/PhysRevMaterials.1.044803]


        Por mais de 65 anos, um composto de nióbio e boro, chamado monoboreto de nióbio (NbB), foi considerado um exemplo clássico de um material supercondutor, um material no qual a corrente elétrica flui livremente, com resistência virtualmente zero.
        Mas esse "conhecimento", registrado nos manuais de física da matéria condensada e em inúmeros artigos científicos especializados, foi agora contestado por pesquisadores das universidades de São Paulo (USP) e Estadual de San Diego (EUA).
        Os físicos descobriram que a supercondutividade detectada no material não é produzida pelo próprio monoboreto de nióbio (NbB), mas por filamentos de nióbio quase puro que margeiam os grãos microscópios do material.
        “Sabemos que o elemento nióbio (Nb), sozinho, apresenta supercondutividade quando resfriado a temperaturas muito baixas, da ordem de 9,2 Kelvin (K). Agora, descobrimos que isso não ocorre com o monoboreto de nióbio (NbB) propriamente dito. Ocorre que, nas amostras de NbB, existe uma grande fração volumétrica de NbB, mas também uma pequena quantidade de Nb quase puro. São duas fases cristalinas distintas que coexistem nos materiais estudados. É essa fase minoritária, composta por aproximadamente 98% de nióbio e 2% de boro, que se comporta como supercondutora,” explica o professor Renato de Figueiredo Jardim.
        Os pesquisadores observaram que, mesmo ocorrendo em uma pequena fração volumétrica, a fase minoritária (Nb0,98B0,02) é supercondutora e forma uma rede tridimensional através da qual a corrente elétrica pode transitar de uma extremidade a outra do material.
        É muito provável que essa característica tenha confundido os descobridores originais da supercondutividade no NbB, levando-os a atribuir a supercondutividade abaixo de aproximadamente 9 Kelvin a esse composto.
        “Identificamos claramente essa estrutura reticular por meio da microscopia eletrônica de varredura. Essa evidência visual foi, por assim dizer, uma prova qualitativa da propriedade. Mas não podíamos sustentar a nossa hipótese apenas neste ponto. Era preciso ir adiante, buscando também uma prova quantitativa, e foi isso que fizemos, aplicando um modelo termodinâmico aos dados tomados nos materiais estudados. Por meio dele, obtivemos então a comprovação procurada,” explicou Jardim.
        Segundo o pesquisador, não há, atualmente, expectativa de aplicação tecnológica para o monoboreto de nióbio. “Mas existe um 'primo' dele, o diboreto de magnésio (MgB2), que passou a despertar grande interesse desde o início da década passada. Pode ser que nossa pesquisa venha contribuir para sua aplicação tecnológica”, disse.
        Do ponto de vista macroscópico, a supercondutividade é uma propriedade exibida por certos materiais que, abaixo de uma dada temperatura, passam a conduzir corrente elétrica sem nenhuma perda de energia, isto é, sem resistência elétrica.
        “Concomitantemente a essa propriedade macroscópica existe outra propriedade, também macroscópica, que é o chamado 'diamagnetismo perfeito',” disse Jardim. Essa segunda propriedade faz com que um supercondutor, na presença de um campo magnético, expulse todo o fluxo magnético do seu interior.
        O diamagnetismo está presente em todos os materiais. Porém, é muitas vezes tão fraco que sua manifestação fica encoberta pela presença de outras respostas magnéticas mais robustas, como o ferromagnetismo - que faz o material ser atraído pelo campo magnético externo - e o paramagnetismo - que faz os dipolos magnéticos atômicos se alinharem paralelamente ao campo magnético externo.
        Quando a resposta diamagnética é suficientemente forte, como ocorre nos supercondutores, a repulsão provocada pelo campo magnético pode fazer o material levitar, um fenômeno explorado por alguns trens de alta velocidade.


Bibliografia:
Absence of superconductivity in NbB. F. Abud, L. E. Correa, I. R. Souza Filho, A. J. S. Machado, M. S. Torikachvili, R. F. Jardim. Physical Review Materials. Vol.: 1, 044803. DOI: 10.1103/PhysRevMaterials.1.044803.



quinta-feira, 19 de outubro de 2017

Qubits supercondutores funcionam como motores quânticos

Com informações da Phys.org -  13/10/2017
      
Nessa arquitetura de duplo poço quântico, o poço da esquerda fica estático, enquanto o da direita oscila, permitindo a geração de trabalho. [Imagem: APS Sachtleben et al.- 10.1103/PhysRevLett.119.090601]


Os motores quânticos ainda parecem estranhos e fora de escala - eles são minúsculos - mas esse quadro pode mudar rapidamente, não apenas ajudando a entender melhor o funcionamento dos processos naturais, como também abrindo possibilidades de aplicações tecnológicas.
Um trio de físicos da Universidade Federal de Santa Catarina acaba de demonstrar que os mesmos circuitos supercondutores que estão na base de uma das abordagens mais promissoras para a construção dos computadores quânticos podem ser usados como motores quânticos - equivalentes microscópicos dos motores de automóvel.
Kewin Sachtleben, Kahio Mazon e Luis Rego mostraram que os qubits supercondutores são funcionalmente equivalentes a sistemas nos quais partículas quânticas tunelam através de depósitos especiais, conhecidos como poços quânticos.
Os poços quânticos têm a capacidade de oscilar, o que significa que sua largura muda repetidamente. Quando isso acontece, o sistema se comporta como o pistão do motor de um automóvel, que se move para cima e para baixo no interior de um cilindro. E esse comportamento oscilatório permite que seja realizado trabalho no sistema.
Os físicos demonstraram, contudo, que, no poço quântico duplo, entre os quais as partículas tunelam, parte desse trabalho vem de dinâmicas quânticas coerentes, o que cria um atrito que diminui a produção do trabalho - o que é diferente do motor quântico capaz de gerar trabalho sem produzir nenhum atrito.
Estes resultados proporcionam uma melhor compreensão da conexão entre o trabalho termodinâmico quântico e o trabalho termodinâmico clássico.
“A distinção entre o trabalho termodinâmico 'clássico', responsável pela transferência de população, e um componente quântico, responsável pela criação de coerências, é um resultado importante,” disse Mazon em entrevista à Phys.org. “A criação de coerências, por sua vez, gera um efeito similar ao atrito, causando uma operação não completamente reversível do motor. Em nosso trabalho conseguimos calcular a força de reação causada sobre a parede do pistão quântico devido à criação de coerências. Em princípio essa força pode ser medida, abrindo a possibilidade experimental de observar o surgimento de coerências durante a operação do motor quântico.”

O menor motor do mundo é um motor quântico feito com um único átomo de cálcio. [Imagem: Johannes Robnagel]


Um dos possíveis benefícios de encarar os qubits supercondutores como motores quânticos é que isso pode permitir incorporar dinâmicas quânticas coerentes em futuras tecnologias, particularmente nos computadores quânticos. Os físicos explicam em seu artigo que um comportamento semelhante pode ser visto na natureza, onde as coerências quânticas melhoram a eficiência de processos como a fotossíntese, a detecção de luz e outros processos naturais.
       “As máquinas quânticas podem ter aplicações no campo da informação quântica, onde a energia das coerências quânticas é usada para realizar a manipulação da informação,” disse Mazon. “Vale lembrar que mesmo a fotossíntese pode ser descrita de acordo com os princípios de funcionamento de uma máquina quântica, de modo que desvendar os mistérios da termodinâmica quântica pode nos ajudar a entender e interpretar melhor os diferentes processos naturais”.


Bibliografia:
Superconducting Qubits as Mechanical Quantum Engines. Kewin Sachtleben, Kahio T. Mazon, Luis G. C. Rego. Physical Review Letters, Vol.: 119, 090601. DOI: 10.1103/PhysRevLett.119.090601



quinta-feira, 5 de outubro de 2017

O dicalcogeneto ganha duas faces (Synopsis: The Dichalcogenide Gets Two Faces)




L. Liang and Q. Chen/University of Groningen


        Os campos elétricos aplicados em ambos os lados de um fino semicondutor dicalcogeneto de metal de transição criam uma camada supercondutora em cima de uma camada metálica dentro do material.
        Como o grafeno, os dicalcogenetos de metais de transição (TMDCs) são materiais que podem, com fita adesiva e paciência, serem diluídos até algumas camadas atômicas. Esse recurso, juntamente com suas propriedades eletrônicas e ópticas superiores, os torna componentes promissores da TMDCs para dispositivos ultracompactos. Jianting Ye, da Universidade de Groningen, e seus colegas mostraram agora que podem induzir dois comportamentos distintos - supercondutividade e condução metálica - em camadas atômicas adjacentes de uma lâmina TMDC inicialmente semicondutora.
        Para obter essa combinação de comportamento, os pesquisadores usaram campos eletrostáticos fortes, que eles aplicaram na superfície do material através de um filme dielétrico, ou "porta". Dependendo da sua polaridade, o campo da porta irá desenhar ou empurrar os portadores de carga dentro de algumas camadas atômicas da superfície. Em 2012, Ye e seus colegas usaram essa abordagem para induzir a supercondutividade em um filme fino do semicondutor MoS2, o TMDC mais estudado. A chave era usar um dielétrico iônico-líquido, que produz campos suficientemente fortes para atingir a densidade de carga necessária para a supercondutividade ocorrer.
        Em seu novo trabalho, Ye e sua equipe tomaram um filme de cinco camadas de MoS2 entre uma porta de líquido iônico (em cima) e uma porta de estado sólido convencional (abaixo). Eles usaram medidas de transporte de carga para confirmar que a camada superior do filme MoS2 tornou-se um supercondutor e coexistiu com um estado metálico de alta mobilidade nas camadas inferiores restantes. Eles também mostraram que poderiam usar a porta inferior para controlar a interação eletrônica entre as camadas supercondutoras e metálicas e até mesmo para suprimir a supercondutividade. Este último efeito poderia ser a base para um novo tipo de transistor supercondutor.





quinta-feira, 14 de setembro de 2017

Projeto brasileiro de trem de levitação magnética é o primeiro a transportar passageiros com essa tecnologia



Projeto da Coppe/UFRJ aguarda resposta para pedido de certificação internacional para poder ser 'exportado'




Maglev-Cobra, o trem de levitação magnética da Coppe/UFRJ (Foto: Divulgação Coppe/UFRJ)



Um trem de levitação magnética por supercondutividade, testado no Rio há um ano e sete meses, está à espera do resultado de um pedido de certificação internacional, que poderá abrir caminho para a sua produção industrial e comercialização. O veículo, criado pela Coppe/UFRJ e em funcionamento na Cidade Universitária, na Ilha do Fundão, é o primeiro no mundo a transportar passageiros com essa tecnologia. A composição, que circula sobre trilhos imantados, com baixo consumo de energia e sem emissão de poluentes, já despertou o interesse da China, que discute um acordo de cooperação com a universidade.
Desde fevereiro de 2016, o chamado Maglev–Cobra já transportou cerca de oito mil pessoas. As viagens pela linha experimental de 200 metros são às terças-feiras, das 11h às 15h, e ligam dois prédios do Centro Tecnológico da UFRJ. No trecho, ele atinge 12km/h, mas, em área urbana, poderá chegar a 100km/h.
Nos testes, o projeto da Coppe/UFRJ não apresentou problemas. A próxima etapa, a de certificação, é conduzida por um órgão independente.
“O processo de certificação tem um custo relativamente alto. Recorremos a um fundo de apoio do BNDES. A proposta está em avaliação”, explica o professor da Coppe/UFRJ Richard Stephan, coordenador do projeto. “O Inmetro ainda não está preparado para esse tipo de certificação, mas a TÜV, da Alemanha, poderia fazê-lo.”
O Maglev–Cobra está no nível sete da escala TRL, que vai até nove e é adotada pela Nasa para medir o grau de amadurecimento de uma nova tecnologia. Atingir o nível máximo indica que o projeto está pronto para ser comercializado.
A tecnologia criada pela Coppe/UFRJ dá sinais de que pode ser uma das soluções para a mobilidade urbana no mundo. O Japão, a Coreia do Sul e a China já dispõem de veículos de levitação magnética em operação comercial (Pequim deverá ganhar uma segunda linha até o fim do ano). Mas há diferenças entre o Maglev–Cobra e os trens da Ásia.
“Ele usa uma técnica de levitação estável que dispensa controladores, sensores e atuadores (dispositivos que movimentam uma carga). É um sistema mais confiável, com menos peso e volume”, diz Stephan.
Hoje, trens semelhantes em operação comercial no mundo usam levitação eletromagnética, que exige um sistema complexo para manter a distância correta entre o trilho e o veículo. A suavidade da operação do Maglev–Cobra impressiona, principalmente quem está acostumado com as composições da SuperVia e do metrô.
“Parece que estamos dentro de algo muito leve. Não faz barulho. É uma viagem muito suave”, disse Sara Braga, de 15 anos, aluna da rede estadual, que visitou a Coppe na semana passada.
        Segundo Stephan, o Maglev–Cobra poderia começar a rodar no Rio ligando a Rodoviária Novo Rio ao metrô da Praça Onze ou do Estácio. Outra possibilidade seria circular entre o shopping Nova América e a Ilha do Governador. Num segundo momento, do Recreio à Barra ou ao longo da Linha Amarela. Especialistas da Coppe já avaliam esses percursos.




Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!