Aplicações da Supercondutividade - O skate voador da Lexus

quinta-feira, 18 de dezembro de 2014

Em 2019, o mercado de tecnologia usando supercondutores vai valer cerca de US$ 4,2 bilhões (Superconducting technology markets will be worth about $4.2 billion in 2019)




Mercado global de tecnologias da supercondutividade, 2013-2019
(Milhões de dólares)
http://www.bccresearch.com/market-research/advanced-materials/superconductors-report-avm066d.html



A BCC Research prevê que o mercado global de tecnologias usando materiais supercondutores deverá se aproximar de US$ 4,2 bilhões em 2019, com uma taxa de crescimento anual de 16,4% nos próximos cinco anos. O segmento de eletrônicos usando materiais supercondutores deverá crescer 58,8% ao ano.
Dominam o mercado atual os magnetos supercondutores usados em tecnologias da saúde. O segmento de saúde é atualmente o maior mercado, respondendo por 63% da fatia mundial em 2013, liderada pelos magnetos supercondutores utilizados em scanners de ressonância magnética.
No entanto, é esperado que o segmento de equipamentos elétricos supercondutores (transformadores, geradores, motores, limitadores de corrente, armazenamento de energia, condutores de corrente, cabos etc.) capture mais de 36% do mercado em 2019. Eletrônicos supercondutores também deverão ganhar uma quota significativa do mercado ao longo dos próximos cinco anos.
        A BCC Research prevê que a quota de pesquisa em ciência e tecnologia da saúde seja de 27% em 2019. Uma queda atribuída pelos investimentos em computação (27% do mercado em 2019) e no seguimento de transportes (1%).
O mercado mundial de aplicações da supercondutividade foi de quase US$ 1,8 bilhão em 2013 e espera-se aproximar cerca de US$ 2,0 bilhões em 2014 e cerca de US$ 4,2 bilhões em 2019, com uma taxa de crescimento anual composta (CAGR) de 16,4% ao longo dos próximos cinco anos.
O mercado global de magnetos supercondutores valia mais de US$ 1,7 bilhões em 2013 e deverá chegar a US$ 1,9 bilhão em 2014 e cerca de 2,6 bilhões até 2019, um CAGR de 6,1% para o período de cinco anos, 2.014-2.019.





quarta-feira, 10 de dezembro de 2014

Átomos “chacoalhados” imitam a supercondutividade de alta temperatura (Rattled Atoms Mimic High-temperature Superconductivity)




No material supercondutor de alta temperatura conhecido como YBCO, a luz de um laser faz os átomos de oxigênio (vermelho) vibrarem entre as camadas de óxido de cobre (azul). Os átomos nessas camadas fora da sua posição normal provavelmente favorece a supercondutividade. Neste estado de curta duração, a distância entre os planos de óxido de cobre dentro da camada aumenta, enquanto que a distância entre as camadas diminui. (Jörg Harms/Max Planck Institute for the Structure and Dynamics of Matter)


Um experimento do SLAC National Accelerator Laboratory forneceu o primeiro vislumbre fugaz da estrutura atômica de um material de como ele entrou em um estado semelhante a supercondutividade de temperatura ambiente.

        Os pesquisadores usaram um comprimento de onda específico de luz laser para “chacoalhar” a estrutura atômica do YBa2Cu3O7-d (YBCO). Em seguida, eles sondaram as mudanças resultantes na estrutura com um feixe laser de raio-X do Linac Coherent Light Source (LCLS).

        Eles descobriram que a exposição inicial à luz do laser resulta em mudanças específicas nos átomos de cobre e oxigênio que comprime e expande as distâncias entre eles, criando um alinhamento temporário que exibe sinais da supercondutividade por alguns bilionésimos de segundo bem acima da temperatura ambiente - até 60 °C. Juntando dados teóricos e experimentais os pesquisadores mostraram como essas mudanças nas posições atômicas permitem a transferência de elétrons que impulsiona a supercondutividade.


Novas visualizações de átomos em movimento

“Este é um estado altamente interessante, mesmo que só exista por um curto período de tempo”, disse Roman Mankowsky do Instituto Max Planck, principal autor do estudo. “Quando o laser excita o material, ele desloca os átomos e altera a estrutura. Esperamos que estes resultados ajudem na concepção de novos materiais para melhorar a supercondutividade”.

Manter o estado supercondutor à temperatura ambiente revolucionaria muitos campos, tornando a rede elétrica mais eficiente e permitindo computadores mais potentes e compactos. 


Uma ferramenta poderosa para explorar a supercondutividade

Josh Turner, um cientista do SLAC afirma que ferramentas poderosas como lasers de raios-X têm causado novo interesse na pesquisa de supercondutores, permitindo que pesquisadores isolem uma propriedade específica que eles querem aprender mais a respeito. Isto é importante porque supercondutores de alta temperatura podem apresentar um emaranhado de propriedades magnéticas, eletrônicas e estruturais que podem competir ou cooperar quando o material se move em direção ao estado supercondutor. Por exemplo, um estudo do LCLS publicado recentemente descobriu que excitando o YBCO com a mesma luz laser se interrompe uma ordem eletrônica que compete com a supercondutividade.

        “O que o LCLS está mostrando agora é como essas diferentes propriedades mudam ao longo de um tempo curto”, diz Turner. “Nós podemos realmente ver como os elétrons ou átomos estão se movendo”.

        Mankowsky diz que futuros experimentos no LCLS podem tentar manter o estado supercondutor por períodos mais longos, usando uma combinação de técnicas para estudar como as outras propriedades evoluem no processo de transição para o estado supercondutor e explorar se as mesmas alterações estruturais estão a trabalhar em outros supercondutores de alta temperatura.

        Pesquisadores do National Center for Scientific Research da França, Paul Scherrer Institute na Suíça, do Instituto Max Planck na Alemanha, Swiss Federal Institute of Technology do Colégio da França, da Universidade de Genebra, da Universidade de Oxford no Reino Unido, do Center for Free-Electron Laser Science na Alemanha, e da Universidade de Hamburgo na Alemanha, também participaram do estudo. O trabalho foi apoiado pelo European Research Council, German Science Foundation, Swiss National Superconducting Center e Swiss National Science Foundation.







Caixa de câmbio acopla eixos por levitação magnética


Redação do Site Inovação Tecnológica - 08/12/2014

 

“É a primeira vez na história que o eixo de entrada e o eixo de saída de um câmbio redutor ficam flutuando sem nenhum tipo de contato, e podem manter um mecanismo que não contém nada mais girando a 3.000 rotações por minuto.” [Imagem: UC3M]
 
 
Engenheiros europeus desenvolveram uma caixa de câmbio baseada na levitação magnética, o que significa que o eixo que vem do motor não toca o eixo que leva a tração para as rodas ou qualquer outro mecanismo a ser acionado.

        Em vez da conexão por meio de engrenagens redutoras, como nos câmbios tradicionais, a transmissão é produzida sem contato, graças ao magnetismo.

        Os eixos de entrada e saída literalmente levitam e, ainda assim, transmitem toda a força necessária do motor para o mecanismo a ser movimentado.

        As principais vantagens são a ausência de atrito entre as peças e de desgaste dos vários componentes, dispensando a necessidade de lubrificação.

        “A vida operacional destes equipamentos pode ser muito mais longa do que a vida dos câmbios redutores convencionais com engrenagens dentadas, e pode funcionar até mesmo em temperaturas criogênicas,” disse Efrén Díez, da Universidade Carlos III de Madri, na Espanha.

        Outra vantagem da transmissão sem contato é a virtual ausência de quebras, com o câmbio suportando grandes sobrecargas - mesmo que um eixo fique bloqueado, as duas peças simplesmente giram sobre si mesmas, já que não há engrenagens para quebrar.

        “É a primeira vez na história que o eixo de entrada e o eixo de saída de um câmbio redutor ficam flutuando sem nenhum tipo de contato, e podem manter um mecanismo que não contém nada mais girando a 3.000 rotações por minuto,” disse o professor José Luíz Perez Díaz.

Embora o objetivo do trabalho fosse construir um protótipo que possa ser usado no espaço, a equipe construiu também uma versão terrestre, que funcionou perfeitamente a temperatura ambiente.

        Os "rolamentos" onde se apoiam os dois eixos são esferas supercondutoras que geram forças de repulsão estáveis, mantendo os eixos girando sem vibrações e evitando possíveis desalinhamentos.

        O funcionamento dos supercondutores no espaço tem a vantagem de dispensar o resfriamento, já que as condições de uso envolvem temperaturas de -210 °C no vácuo.

        No espaço, o câmbio magnético deverá acionar braços robóticos e posicionadores de antenas, equipamentos que dependem de alta precisão, além de veículos espaciais para exploração robotizada ou humana.

        A versão "terráquea" teve os ímãs supercondutores substituídos por ímãs permanentes. Segundo a equipe, a caixa redutora por levitação terá grande apelo nas indústrias alimentícia e farmacêutica, onde a ausência de óleos lubrificantes é um apelo importante devido às estritas exigências de limpeza. Mas, segundo eles, o equipamento pode ser usado em qualquer aplicação onde seja necessário um câmbio, ou caixa de redução.


 

Bibliografia:

 

Performance of magnetic-superconductor non-contact harmonic drive for cryogenic space applications. Efren Diez-Jimenez, Ignacio Valiente-Blanco, Victor Castro-Fernandez, Jose Luis Pérez Díaz. Journal of Engineering Tribology, Vol.: 228 Number: 10 Pages: 1071-1079. DOI: 10.1177/1350650114527584

 


 

sexta-feira, 5 de dezembro de 2014

Agência de inteligência dos EUA pretende desenvolver um supercomputador usando supercondutores (US intel agency is developing a superconducting exascale computer and cryogenic memory)




Um chip supercondutor do MIT, que usa junções Josephson


O setor secreto de inteligência do governo dos EUA, a Intelligence Advanced Research Projects Activity (IARPA), anunciou um programa para construir um supercomputador empregando materiais supercondutores. A IARPA junto com a IBM, Raytheon e Northrop Grumman deverão desenvolver o supercomputador, mas os detalhes financeiros exatos do acordo não estão disponíveis. Em última análise, a finalidade do programa é construir um supercomputador em escala exa - um computador que é capaz de executar, pelo menos, 1.000 petaflops (1 exaflop), ou cerca de 40 vezes mais rápido do que os supercomputadores atuais. E sim, caso você esteja se perguntando, esse supercomputador certamente será usado por agências como a CIA e a NSA para quebrar mensagens criptografadas.
        Como você provavelmente já deduziu, a IARPA é uma versão de inteligência do Departamento de Defesa dos Estados Unidos (DARPA). Uma rápida olhada nos programas de pesquisa da IARPA mostra semelhanças com a DARPA, mas com um viés para a engenharia social, computação neuromórfica e análise de big data. Neste caso, o supercomputador supercondutor é parte do programa Cryogenic Computing Complexity (C3).
        A principal tarefa do C3 é encontrar um caminho para a computação em escala exo, que não exija requisitos de energia e refrigeração extremamente caros. Os melhores supercomputadores atuais no mundo consomem cerca de 10 megawatts de energia para fornecer 20 petaflops de computação. Enquanto o hardware está se tornando energeticamente mais eficiente - graças aos avançados nós como o Intel 14 nm e o monstruoso paralelismo do CPU Power8 da IBM - esses avanços por si só não são suficientes para tornar viável a computação em escala exo. É necessário um novo tipo de computação, uma alternativa que não consuma tanta energia nem produza tanto calor.



Já existem alguns processadores quânticos supercondutores, como este de 128 qubit da D-Wave - mas eles não são capazes de aplicações em supercomputação



        Introduzir a lógica supercondutora - que é essencialmente um termo genérico para qualquer tipo de computador que usa a supercondutividade para reduzir a zero a resistência do circuito/transistor - reduzirá massivamente o consumo de energia e a geração de calor. Neste caso, parece que as companhias envolvidas no projeto deverão investigar especificamente a utilização de junções Josephson. Basicamente, se você colocar um semicondutor no meio de um fio supercondutor, você pode ativar o efeito Josephson em um interruptor(comutador,chave) com um baixíssimo consumo de energia. Essa abordagem é chamada de single-flux quantum (SFQ) logic – lógica de um único fluxo de quantum (SFQ) - e mais importante, é possível usá-la para conduzir um computador digital (binário). (computação usando supercondutores faz referência à computação quântica, mas nem sempre)
        O programa C3 da IARPA também considera o desenvolvimento da memória criogênica, que vai operar muito próxima com a CPU contendo supercondutores - mas atualmente não há detalhes sobre o aspecto dessa memória. Em ambos os casos, o poder de processamento não tem sentido sem os caches e a memória principal para apoiá-la.
        O plano é construir um protótipo de lógica supercondutora e memória, e se for um sucesso, avançar para a fase 2 do C3, que deverá ver essas novas tecnologias trabalhando em um supercomputador supercondutor utilizável. Pesquisas iniciais sugerem que a lógica supercondutora pode comutar a velocidades de 770 GHz, e fornecer cerca de 100 petaflops de desempenho enquanto consome apenas 200 kilowatts.
Nesse ínterim, a IBM e a Nvidia estarão prontas para construir dois supercomputadores de 150 petaflops para o Departamento de Energia dos Estados Unidos - que vai ser, de longe, os supercomputadores mais eficientes do mundo, mas que continuam a consumir energia suficiente para alimentar milhares de residências.



quarta-feira, 3 de dezembro de 2014

Supercondutores em automação industrial (Superconductive Factory Automation for Lower Friction and Faster Manufacturing)







Poderia a supercondutividade, o Santo Graal da engenharia elétrica, formar uma base para automação industrial? A fábrica do futuro pode ser sem atrito com levitação magnética em seu interior.
A empresa de automação Festo desenvolveu um conceito para a fabricação com supercondutores que sugere o impossível: ausência de atrito, movimento de alta precisão sem unidades complexas e feedback dos sistemas de controle.
Materiais supercondutores podem “congelar” o campo de um ímã permanente nas proximidades e mantê-lo em suspensão a uma distância fixa. O intervalo de ar estável produzido permite o movimento sem contato de objetos, sem perdas por atrito e sem a necessidade de mecanismos de controle tradicionais.
Imagine uma fábrica de semicondutores que mantém um ambiente hermeticamente isolado. Se a fábrica for capaz de movimentar os vários componentes de todo o conjunto, sem os passos típicos de manipuladores remotos, todo o processo pode ser automatizado.





O vídeo de demonstração da Festo mostra o movimento de um objeto levitando em todas as direções. Também mostra a manipulação do próprio elemento supercondutor: o criostato com o material supercondutor é transferido de um sistema de eixo elétrico para outro.
O vídeo mostra a facilidade com que os objetos podem ser movidos dentro de um espaço hermeticamente fechado. Operações com semicondutores dentro de câmaras a vácuo podem ser uma aplicação natural, assim como outras indústrias com ambientes nucleares, produtos farmacêuticos etc.

 

Supercondutores prometem liberdade de movimento, com controle

Ferramentas livres flutuantes operando dentro de ambientes hermeticamente fechados resolvem muitos problemas, mas o controle é sempre um problema. Outro conceito da Festo demonstra o movimento livre de colisões de sistemas autônomos em uma área fechada, exatamente a solução do problema de controle para elementos de automação livre flutuando em ambientes hermeticamente fechados.





Oito esferas brancas voam em todas as direções acima das cabeças dos espectadores, antes que os movimentos aleatórios evoluam para uma forma organizada. De repente, uma das esferas se destaca e os outros seguem-na como pérolas em um colar. A linha perfeita se transforma em uma curva senoidal no ar até as esferas formarem um círculo, parte de uma coreografia elaborada exibida pelo conceito eMotionSpheres.


Coordenação entre compenentes voadores

O vídeo mostra como objetos podem ser coordenados sem colidir em um espaço tridimensional. Dez câmeras instaladas na sala monitoram as esferas através de seus marcadores de infravermelhos (LEDs) e transmitem os dados da posição para um computador central.






As ações calculadas são enviadas de volta para os objetos e são executadas localmente. No computador existem caminhos pré-programados, que especificam as rotas de voo das esferas quando voam em formação. Graças aos padrões de comportamento adicionalmente armazenados, as esferas podem se mover autonomamente pelo espaço.



Aplicações ilimitadas sem as restrições da gravidade

A aplicação no mundo real dos conceitos desenvolvidos pela Festo vai exigir vários avanços tecnológicos. Para aplicações de produção em larga escala, por exemplo, o sistema de propulsão terá de transportar uma carga útil e manter a precisão de posicionamento e repetibilidade apesar de massas inerciais várias vezes o peso dos próprios robôs.
O aspecto da levitação magnética também é limitado por limites na tecnologia atual dos supercondutores. O objetivo é a supercondutividade em temperatura ambiente, e, apesar de ser possível aproveitar o fenômeno usando refrigerantes comercialmente disponíveis como o nitrogênio líquido, o estado da arte está longe da produção em escala comercial. Quando a supercondutividade em temperatura ambiente for obtida, a tecnologia de controle estará implementada.
Fábricas com enxames de pequenos robôs que voam em um ballet autônomo, montando e transportando peças em três dimensões é uma possibilidade real. O calendário será provavelmente em décadas, mas não em séculos.




Supercondutor à base de ferro tem uma temperatura crítica superior ao nitrogênio líquido (Iron superconductor has a critical temperature above liquid nitrogen)



Influência de um campo magnético externo na resistência nula detectada nas medidas de transporte com o método das quatro pontas em uma amostra de FeSe/STO.


Um filme de camada única de um supercondutor à base de ferro apresentou temperatura crítica superior a do nitrogênio líquido (N2(l)). Supercondutores refrigerados com N2(l) são muito mais baratos de operar do que aqueles que necessitam de temperaturas mais baixas.
        Experiências recentes sobre filmes de FeSe crescidos em um substrato de SrTiO3 (STO) sugerem que efeitos de interface podem ser utilizados como um meio para alcançar supercondutores com temperaturas críticas (TC) de até 80 K. Isto é cerca de dez vezes a TC do FeSe e superior ao valor recorde de 56 K para supercondutores à base de Fe.


Crescimento e caracterização de uma película de camada única de alta qualidade do FeSe.


Juntamente com recentes estudos da supercondutividade em interfaces de heteroestruturas, estes resultados reacendem a ideia de longa data que o emparelhamento de elétrons nas interfaces entre dois materiais diferentes podem ser adaptadas para alcançar a supercondutividade de alta temperatura.
Medidas de Angle-Resolved Photoemission Spectroscopy (ARPES – espectroscopia de fotoemissão com resolução angular – tradução livre) do sistema FeSe/STO revelaram uma estrutura eletrônica distinta do FeSe, com um gap de energia desaparecendo em torno de 65 K. No entanto, as medidas de transporte elétrico detectaram resistência zero somente abaixo de 30 K. Agora, pesquisadores relataram a observação da supercondutividade acima de 100 K no sistema FeSe/STO, confirmando-o como um material para o estudo da supercondutividade de alta Tc.





Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!