Aplicações da Supercondutividade - O skate voador da Lexus

sexta-feira, 20 de julho de 2018

Brasileiros avançam na compreensão da supercondutividade


Com informações da Agência Fapesp -  25/06/2018

Além de cabos supercondutores para transmissão de energia, há grande expectativa sobre os chips supercondutores.[Imagem: Sander Münster, Kunstkosmos]

Temperaturas dos supercondutores
Descoberto acidentalmente há mais de um século, o fenômeno da supercondutividade continua a prometer uma revolução tecnológica.
Foi em 1911, ao estudar o comportamento do metal mercúrio quando resfriado à temperatura de 4 K (-269 °C), que o físico holandês Heike Kamerlingh Onnes (1853-1926) observou, pela primeira vez, a propriedade que alguns materiais possuem de conduzir a corrente elétrica sem resistência nem perdas, nas vizinhanças do zero absoluto.
Na década de 1980, o interesse pelo assunto se renovou quando se obteve experimentalmente a supercondutividade em temperaturas relativamente mais altas, da ordem de 90 K (-183 °C). Esse número tem sido superado de forma consistente: Em 2015, uma equipe alemã apresentou um supercondutor "quente" que trabalha a -70 °C.

Transição de Mott
Mas o que realmente motiva esse campo de pesquisas é a busca pela realização da supercondutividade a temperatura ambiente.
É nesse contexto que se insere um estudo realizado por físicos da Universidade Estadual Paulista (Unesp), em Rio Claro (SP), em colaboração com a Universidade Paris Sul, na França.
Em diversos materiais, a fase supercondutora se manifesta na proximidade da chamada 'fase isolante de Mott' [Nevill Francis Mott (1905-1996)]. A transição metal-isolante de Mott é uma mudança abrupta na condutividade elétrica que ocorre a uma dada temperatura quando a repulsão de Coulomb entre os elétrons se torna comparável à energia cinética dos elétrons livres.
"Quando a repulsão de Coulomb passa a ser relevante, os elétrons, antes itinerantes, se tornam localizados, minimizando assim a energia total do sistema. Essa localização eletrônica constitui a 'fase isolante de Mott'. Em alguns casos, um processo ainda mais exótico acontece. Devido às interações entre elétrons ocupando sítios vizinhos da rede, os elétrons se rearranjam na rede de maneira não homogênea. Ocorre, então, a chamada 'fase de ordenamento de carga'. Nosso estudo tratou desse tipo de fenômeno," explicou o professor Valdeci Pereira de Souza, coordenador da pesquisa.
Quando ocorre a fase de ordenamento de carga, a distribuição não homogênea das cargas, por vezes acompanhada de uma distorção da rede cristalina, faz com que o material passe a exibir uma polarização elétrica e, consequentemente, um comportamento ferroelétrico. É a chamada "fase ferroelétrica de Mott-Hubbard" [John Hubbard (1931-1980)].

Sais de Fabre
Para explorar experimentalmente essas fases exóticas, os pesquisadores da Unesp trabalharam com os chamados "sais de Fabre", materiais formados a partir de uma molécula orgânica, a TMTTF (tetrametiltetrathiafulvaleno), que apresenta uma configuração simétrica, com uma ligação dupla de carbono no centro e dois radicais metil de cada lado. O material foi estudado em um criostato, que permite alcançar um ponto frio e magnético, com temperatura de 1,4 Kelvin e campo de 12 Teslas.
"Com tal ferramenta experimental, nos propusemos não apenas a caracterizar materiais, embora isso seja importante, mas a investigar propriedades fundamentais da matéria, que se manifestam em condições extremas. Os sais de Fabre apresentam diagramas de fase extremamente ricos para quem empreende esse tipo de pesquisa. Os referidos sistemas moleculares já haviam sido explorados por meio de ressonância magnética nuclear, espectroscopia de infravermelho e outras técnicas. O que fizemos essencialmente foi medir sua constante dielétrica no regime de baixas frequências," disse Mariano.
Vale lembrar que a constante dielétrica varia de material para material e, embora seja uma grandeza macroscópica, nos diz quão polarizável um material pode ser.
      “Tendo em vista que os sais de Fabre são materiais altamente anisotrópicos, ou seja, com propriedades de transporte que dependem expressivamente da direção cristalográfica, quando o ordenamento de carga ocorre, temos a polarização elétrica de Mott-Hubbard ao longo da pilha de moléculas [TMTTF] que formam o material. Tal polarização é expressiva e já havia sido reportada na literatura em 2001. Em nosso novo trabalho, medimos pela primeira vez a contribuição iônica para a constante dielétrica nestes materiais. Verificamos que, à medida que se reduz a temperatura, a contribuição iônica também diminui dando lugar à fase de Mott-Hubbard. Esta foi uma observação nova, sem registro na literatura científica, uma contribuição genuinamente nossa,” finalizou Mariano.


Bibliografia:

Probing the ionic dielectric constant contribution in the ferroelectric phase of the Fabre salts. Mariano de Souza, Lucas Squillante, Cesar Sônego, Paulo Menegasso, Pascale Foury-Leylekian, Jean-Paul Pouget. Physical Review B. 
DOI: 10.1103/PhysRevB.97.045122
https://arxiv.org/pdf/1801.00626.pdf




quarta-feira, 28 de março de 2018

Google apresenta processador quântico de 72 qubits


Redação do Site Inovação Tecnológica -  07/03/2018

À esquerda, o protótipo do Bristlecone. À direita, um esquema do processador onde cada X representa um qubit, com as conexões aos qubits mais próximos. [Imagem: Google Labs]


Engenheiros do Quantum AI Lab, o laboratório do Google responsável pelas pesquisas em computação quântica e outras tecnologias avançadas, apresentaram seu mais novo processador quântico. O processador, batizado de Bristlecone, tem 72 qubits do tipo supercondutor.
A empresa afirma que o objetivo deste protótipo é funcionar como plataforma de testes para melhorar as taxas de correção de erros, um dos grandes desafios da computação quântica, e a escalabilidade, ou seja, a engenharia necessária para ir acrescentando bits quânticos adicionais.
Na verdade, o Bristlecone já é um escalonamento de uma versão anterior de 9 qubits. Essa versão anterior apresentou taxas de erro consideradas baixas: 1% na leitura dos valores gravados, 0,1% na confiabilidade das portas de um qubit e, mais importante em termos práticos, 0,6% nas portas de dois qubits.
O consenso entre os pesquisadores da área é que a chamada "supremacia quântica", o ponto a partir do qual os processadores quânticos podem superar os processadores eletrônicos clássicos, será alcançada com um processador quântico de pelo menos 49 qubits que apresente uma taxa de erro máxima de 0,5%.
Como servirá como plataforma de testes, a empresa ainda não anunciou as taxas de erro do Bristlecone. De qualquer forma, a opção por aumentar largamente o número de qubits, sem se limitar aos 49 qubits que a teoria aponta como fronteira para a supremacia quântica, como fez a Intel recentemente, dá aos projetistas um campo mais amplo para experimentações e testes.
“Nós escolhemos um dispositivo deste tamanho para podermos demonstrar a supremacia quântica no futuro, para investigar a correção de erros de primeira e segunda ordens usando código de superfície, e para facilitar o desenvolvimento de algoritmos quânticos em um hardware real,” anunciou o Google.
Código de superfície é uma técnica de programação de processadores quânticos que usa códigos estabilizadores compostos de qubits dispostos em duas dimensões, reduzindo significativamente as taxas de erro. Uma técnica alternativa, embora similar, é o chamado código de cores.
“Pode-se pensar, por analogia, no código de superfície como um guardanapo com duas partes ásperas e duas lisas, e o código de cores como se dobrássemos esse guardanapo ao longo de sua diagonal. Como no guardanapo dobrado existem coisas novas que agora estão próximas, é possível fazer mais portas lógicas 'transversalmente'. Isso é bom porque evita a propagação de erros e é relativamente fácil. No entanto, o código de cor precisa de mais qubits para interagir em cada estabilizador, o que acaba levando a um limiar de ruído mais baixo. Assim, pode-se dizer que, embora muito similares, cada código tem suas vantagens e desvantagens,” explicou o professor Fernando Pastawski, do Instituto de Tecnologia da Califórnia.

Relação teórica entre a taxa de correção de erros e o número de qubits. A área em vermelho destaca o objetivo da equipe do Google. [Imagem: Google Labs]


“Queremos alcançar um desempenho semelhante às melhores taxas de erro do processador de 9 qubits, mas agora em todos os 72 qubits do Bristlecone. Acreditamos que o Bristlecone pode então se tornar uma prova de princípio convincente para a construção de computadores quânticos em grande escala. Operar um dispositivo como o Bristlecone com baixas taxas de erro requer uma harmonia entre uma porção de tecnologias, do software e da eletrônica de controle ao próprio processador. Fazer isso direito requer uma engenharia de sistemas cuidadosa em várias iterações. Estamos cautelosamente otimistas de que a supremacia quântica pode ser alcançada com o Bristlecone,” disse a equipe do Google em nota.



domingo, 11 de março de 2018

Primeiro supercondutor topológico usa partículas de Majorana como qubits



Redação do Site Inovação Tecnológica -  05/03/2018


As placas de alumínio foram anexadas ao isolador topológico usando platina. A imagem mostra um dos dispositivos usados no experimento. Devido ao estresse, induzido por vários resfriamentos, apareceram saliências vistas claramente no intervalo do dispositivo. Isto faz com que as características dos pares supercondutores de elétrons variem em diferentes direções, uma assinatura de supercondutividade não-convencional. [Imagem: Chalmers University]



Os férmions de Majorana nem bem saíram da teoria e já começam a ajudar a computação quântica a combater um dos seus principais problemas: a decoerência, que é a perda dos dados que ocorre quando a interferência externa faz com que os qubits decaiam de seus estados quânticos entrelaçados ou superpostos.
Com sua insensibilidade característica à decoerência, essas partículas de Majorana estão se tornando o centro das atenções para a construção de qubits estáveis - a Microsoft está tentando desenvolver esse tipo de computador quântico.
As partículas de Majorana são partículas fundamentais que, assim como os elétrons, nêutrons e prótons, pertencem ao grupo dos férmions. Elas podem ser entendidas de forma muito simplificada como um “meio elétron. E, ao contrário de todos os outros férmions, os férmions de Majorana são sua própria antipartícula.
O problema é que eles só ocorrem em circunstâncias muito especiais, o que explica porque, mesmo previstos por Ettore Majorana em 1937, só foram demonstrados na prática em 2012.
Agora, os pesquisadores da Universidade de Tecnologia de Chalmers, na Suécia, conseguiram fabricar um componente capaz de hospedar as partículas de Majorana, o que significa que torna-se possível usá-las na prática.
Nos materiais de estado sólido, os férmions de Majorana só parecem ocorrer nos chamados supercondutores topológicos - um tipo de supercondutor que é tão novo e especial que pode-se dizer que não haviam provas inequívocas de que ele existisse de verdade.
Sophie Charpentier e seus colegas estão entre os primeiros grupos de pesquisa no mundo a divulgar resultados experimentais indicando que eles realmente conseguiram fabricar um supercondutor topológico.
A equipe começou trabalhando com um isolante topológico - que não é supercondutor - feito de telureto de bismuto (Be2Te3). Um isolante topológico é basicamente um isolador, ou seja, não conduz corrente elétrica em seu interior - contudo, ele conduz a corrente na sua superfície.



O segredo do supercondutor topológico está na camada na junção dos materiais. [Imagem: Sophie Charpentier et al. - 10.1038/s41467-017-02069-z]



Sobre o isolante topológico, a equipe usou platina para adicionar uma camada de um supercondutor convencional por cima, neste caso o alumínio, que conduz a corrente totalmente sem resistência a temperaturas muito baixas.
Enquanto fazia testes e medições, a equipe precisou resfriar o material várias vezes e esses ciclos de resfriamento repetidos parecem ter gerado tensões no material, o que fez com que a supercondutividade alterasse suas propriedades.
“Os pares de elétrons supercondutores passaram a vazar para o isolante topológico, que também se torna supercondutor,” explicou o professor Thilo Bauch. E esse comportamento representa a característica típica de um supercondutor topológico, onde os férmions de Majorana sentem-se à vontade para não se destruírem mutuamente.
“Para aplicações práticas, o material é principalmente de interesse para aqueles que estão tentando construir um computador quântico topológico. Nós queremos explorar a nova física que se esconde nos supercondutores topológicos - este é um novo capítulo da física,” disse a professora Floriana Lombardi, coordenadora da equipe.



Bibliografia
Induced unconventional superconductivity on the surface states of Bi2Te3 topological insulator. Sophie Charpentier, Luca Galletti, Gunta Kunakova, Riccardo Arpaia, Yuxin Song, Reza Baghdadi, Shu Min Wang, Alexei Kalaboukhov, Eva Olsson, Francesco Tafuri, Dmitry Golubev, Jacob Linder, Thilo Bauch, Floriana Lombardi. Nature Communications. Vol.: 8, Article number: 2019. DOI: 10.1038/s41467-017-02069-z.




segunda-feira, 5 de fevereiro de 2018

Os físicos encontraram pistas sobre as origens da supercondutividade de alta temperatura (Physicists find clues to the origins of high-temperature superconductivity)






Conversão entre correlações de elétrons incoerentes e coerentes nos estados não supercondutor e supercondutor de cupratos, respectivamente. Crédito: Li et al. Nature Communications.


Desde a descoberta dos cupratos em 1986, têm havido confusão entre os pesquisadores. Os cupratos possuem temperaturas críticas de até 138K à pressão ambiente, o que excede a de outros supercondutores e é ainda maior do que o que se pensava possível com base na teoria.
Agora, em um novo estudo, os pesquisadores descobriram a existência de um ciclo de feedback positivo que aumenta a supercondutividade dos cupratos e pode lançar luz sobre as origens da supercondutividade de alta temperatura - considerada uma das questões mais importantes abertas na física.
O mecanismo decorre do fato de que os elétrons (no cuprato) no estado não supercondutor estão correlacionados de forma diferente do que na maioria dos outros sistemas, inclusive em supercondutores convencionais, que possuem correlações de elétrons fortemente coerentes. Em contrapartida, os cupratos em seu estado não supercondutor possuem correlações “metálico-estranhas” fortemente incoerentes, que são parcialmente removidas ou enfraquecidas quando os cupratos se tornam supercondutores.
Devido a estas correlações de elétrons incoerentes, acredita-se amplamente que o quadro que descreve a supercondutividade convencional - que se baseia na noção de quasipartículas - não pode descrever com precisão a supercondutividade dos cupratos. Na verdade, algumas pesquisas sugerem que os cupratos supercondutores possuem propriedades eletrônicas tão incomuns que, mesmo tentando descrevê-las com a noção de partículas de qualquer tipo, torna-se inútil.
Isso leva à questão de qual papel, se houver, as correlações “metálico-estranhas” desempenham na supercondutividade de alta temperatura?
O resultado principal do novo estudo é que essas correlações simplesmente não desaparecem no estado supercondutor em cupratos, mas sim converte-se em correlações coerentes que levam a um aprimoramento do emparelhamento de elétrons supercondutores. Este processo resulta em um ciclo de feedback positivo, no qual a conversão das correlações “metálico-estranhas” incoerentes em um estado coerente aumenta o número de pares de elétrons supercondutores, o que, por sua vez, leva a mais conversão, e assim por diante.
Os pesquisadores descobriram que, devido a este mecanismo de feedback positivo, a força das correlações de elétrons coerentes no estado supercondutor é sem precedentes, superando o que é possível para os supercondutores convencionais. Uma interação de elétrons tão forte também abre a possibilidade de que a supercondutividade nos cupratos possa ocorrer devido a um mecanismo de emparelhamento completamente não convencional - um mecanismo de emparelhamento puramente eletrônico que poderia surgir unicamente devido a flutuações quânticas.
“Nós descobrimos experimentalmente que as correlações de elétrons incoerentes no ‘estado normal’ do metal estranho são convertidas em correlações coerentes no estado supercondutor que ajudam a fortalecer a supercondutividade, com um loop de feedback positivo subseqüente”, afirma Dan Dessau, co-autor da pesquisa. “Um loop de feedback positivo tão forte deve fortalecer os mecanismos de emparelhamento mais convencionais, mas também pode permitir um mecanismo de emparelhamento verdadeiramente não convencional (puramente eletrônico)”.
Surpreendentemente, os pesquisadores também descobriram que poderiam descrever seus resultados experimentais usando uma abordagem semi-convencional de quase partículas, apesar do fato de que os cupratos se comportam de forma tão diferente dos outros materiais.
No futuro, os pesquisadores planejam investigar se este mecanismo de feedback positivo pode ser integrado em outros materiais, talvez levando a novos tipos de supercondutores de alta temperatura.
“Nós podemos procurar loops de feedback positivos semelhantes em materiais relacionados, e também podemos usar as técnicas recém-desenvolvidas baseadas em ARPES para investigar os detalhes das correlações eletrônicas de forma mais precisa”, disse Li.




sexta-feira, 26 de janeiro de 2018

Intel apresenta processador quântico com 49 qubits

Redação do Site Inovação Tecnológica -  22/01/2018



Processadores quânticos da Intel: com 7, 17 e, agora, à direita, com 49 qubits supercondutores. [Imagem: Walden Kirsch/Intel]


A Intel apresentou um processador quântico de 49 qubits, acertando em cheio o limite teórico que vem colocando entraves para os computadores e simuladores quânticos.
O processador foi batizado de Tangle, em homenagem a um lago de mesmo nome no Alasca e uma referência à temperatura criogênica que os qubits supercondutores precisam para funcionar.
Como existem vários desafios para a miniaturização dos qubits supercondutores, a Intel anunciou também que está fazendo progressos nos qubits de spin, nos quais as informações são guardadas na direção de rotação de elétrons individuais, um campo onde computação quântica e spintrônica se confundem.
Os qubits spintrônicos se parecem com um transístor que opera com um único elétron, sendo similares em vários aspectos aos transistores convencionais. Isso significa que eles podem ser miniaturizados usando a tecnologia tradicional da microeletrônica e serem fabricados por processos comparáveis. A Intel anunciou que já desenvolveu um fluxo de fabricação de qubits de spin usando sua tecnologia de processo de 300 mm.
Infelizmente, a empresa não deu quaisquer detalhes sobre o desempenho do seu processador com qubits supercondutores e nem adiantou com quantos qubits de spin seus engenheiros estão trabalhando. Sem informações, analistas da indústria acreditam ser seguro dizer que outros participantes dessa corrida pela computação quântica, como IBM e Google, estão à frente.
A gigante dos processadores eletrônicos, às voltas com um bug que deverá lhe custar milhões de dólares na Justiça, achou melhor desconversar: “Acreditamos que serão necessários de cinco a sete anos antes que a indústria consiga lidar com os problemas de engenharia e provavelmente será necessário um milhão ou mais qubits para obter relevância comercial,” disse Mike Mayberry, diretor do Intel Labs.
Segundo a empresa, um processador quântico de teste de 49 qubits é um marco importante porque permitirá avaliar e melhorar as técnicas de correção de erros e simular problemas computacionais reais.



quinta-feira, 14 de dezembro de 2017

Pesquisa abre rota para a supercondutividade fotônica



Resultado de experimentos no Departamento de Física, achado inédito foi saudado pela comunidade científica internacional




Aparato de detecção do par de fótons: observação em temperatura ambiente Cassiano Rabelo / UFMG



O fenômeno conhecido como Par de Cooper, em que elétrons se agrupam aos pares, condição que elimina a resistência elétrica e transforma materiais em supercondutores, foi detectado também em fótons, por pesquisadores da UFMG, em parceria com teóricos da Universidade Federal do Rio de Janeiro (UFRJ). O trabalho teve grande repercussão internacional, uma vez que abre campo para estudos sobre supercondutividade fotônica, capaz de ser alcançada em temperatura ambiente, ao passo que a eletrônica é obtida em condições extremas e de difícil reprodução.
O artigo Photonic counterparts of Cooper Pairs, publicado neste mês na revista de maior prestígio entre físicos – Physical Review Letters –, confirma a repetição do resultado em testes com mais de uma dezena de materiais, entre os quais, água, vidro, quartzo e diamante. O trabalho, abordado em matéria de capa da edição 2.001 do Boletim UFMG, é fruto de investigações que geraram a tese de Filomeno de Aguiar Júnior e a dissertação de Arthur Patrocínio Pena, sob orientação do professor Ado Jorio, do Departamento de Física da UFMG.
Cauteloso com o achado, Ado Jorio ressalta que o efeito obtido na supercondutividade eletrônica decorre de milhões de pares de elétrons naquele estado, capazes de produzir grandes campos magnéticos, com aplicações macroscópicas. “Utilizando dois detectores ultrassensíveis, conseguimos provar que os fótons estavam sendo gerados e se propagando em pares, mas medimos pares de Cooper ainda isolados, não agrupados aos milhares”, explica.
Além disso, pondera o coordenador do grupo, embora a supercondutividade eletrônica tenha aplicações de alto impacto, a exemplo de aparelhos de ressonância magnética e alguns trens de alta velocidade, ainda não é possível saber se uma supercondutividade de fótons teria aplicações tão relevantes. Segundo ele, é cedo para pensar em efeitos como supertransparência e supercondutividade luminosa.

Repercussão 
O trabalho, entretanto, foi recebido com entusiasmo pela comunidade científica. Tão logo foi divulgado pelo Massachusetts Institute of Technology (MIT), dos Estados Unidos, às vésperas da publicação, o artigo repercutiu em periódicos de alto impacto como Nature, Science e Russia News Today. A versão francesa da enciclopédia Wikipedia acrescentou resultados do artigo ao verbete Supraconductivité, em que indaga se existe um equivalente fotônico para a supercondutividade.
“Constatamos que a observação dos pares fotônicos à temperatura ambiente exige condições específicas, isto é, em materiais com átomos leves e ligações muito fortes, como aqueles que contêm carbono”, diz o pesquisador. Segundo ele, os componentes dos pares, tanto os eletrônicos quanto os de fótons, têm de trocar informações entre si por meio de vibração. Se o meio está vibrando demais, é como se houvesse muito ruído no sistema, o que atrapalha a comunicação. Por isso, na supercondutividade de elétrons, é preciso ter temperaturas baixíssimas, mais de 100 graus abaixo de zero, o que equivale a baixa vibração e, portanto, pouco ruído. 
Desse modo, as condições para a supercondutividade elétrica são muito restritas – não é possível, por exemplo, ter em casa uma rede elétrica de supercondutores, porque não existe supercondutor à temperatura ambiente. “Os materiais supercondutores usam nitrogênio líquido, alguns precisam de hélio líquido, sistemas que funcionam a baixíssimas temperaturas, isto é, uma condição muito extrema, muito difícil de ser obtida”.
Embora o fenômeno fotônico possa ser observado até em temperatura ambiente, por enquanto, as descobertas feitas pelo grupo brasileiro abrem mais questionamentos do que campos de aplicação, afirma Ado Jorio. “Pelo estágio de desenvolvimento do trabalho, ainda não se deve superdimensionar o efeito”, pondera. Ele acrescenta, entretanto, que a divulgação do artigo abre uma corrida entre grupos de pesquisa de todo o mundo, para fazer avançar o conhecimento sobre o assunto. “Provavelmente muita gente vai trabalhar nesse tema, iniciado com uma pesquisa totalmente brasileira”, afirma. A aquisição dos equipamentos usados nos experimentos foi viabilizada por financiamento da Finep, do CNPq e da Fapemig.
Ado Jorio explica que o trabalho resulta de projeto de união de duas áreas da Física: ótica quântica e ciência de materiais. “São dois campos muito distintos que, quando conversam, produzem grandes novidades”, afirma. 


ArtigoPhotonic counterparts of Cooper Pairs
RevistaPhysical Review Letters 
Autores: Ado Jorio e Carlos Henrique Monken (professores da UFMG), Filomeno de Aguiar Júnior e Arthur Patrocínio Pena (alunos da UFMG), André Saraiva, Reinaldo de Melo e Souza, Marcelo F. Santos e Belita Koiller (UFRJ)




Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!