Aplicações da Supercondutividade - O skate voador da Lexus

quarta-feira, 18 de janeiro de 2017

Nova liga supercondutora alterna entre fases (Copper stripes help iron pnictide lock in insulating state)



A nova liga do Rice Center for Quantum Material’s é o primeiro supercondutor à base de ferro que pode ser continuamente ajustado da fase supercondutora à fase isolante de Mott. Crédito: Jeff Fitlow/Rice University


Físicos do Rice Center for Quantum Material’s (RCQM) criaram um novo material à base de ferro que oferece pistas sobre as origens microscópicas da supercondutividade de alta temperatura. O material que contém os elementos ferro, sódio, cobre e arsênio foi obtido pelo estudante Rice Yu Song no laboratório do físico Pengcheng Dai.
O material foi obtido pela mistura de ingredientes em uma atmosfera de argônio puro selada em recipientes de niobio e ‘cozida’ a quase 1.000 ºC. A liga exibe camadas em que ferro e cobre se separam em listras alternadas. Essa característica é crítica para a utilidade do material em explicar as origens da supercondutividade de alta temperatura, disse o diretor do RCQM, Qimiao Si.
“Ao formar esse padrão regular, Yu Song removeu fisicamente a desordem do sistema, e isso é crucial para ser capaz de dizer algo significativo sobre o que está acontecendo eletronicamente”, disse Si, um físico teórico que trabalhou para explicar as origens da supercondutividade de alta temperatura e fenômenos semelhantes há quase duas décadas.
“O problema central da supercondutividade de alta temperatura é entender a relação precisa entre esses dois estados fundamentais da matéria (isolante e supercondutor) e a transição de fase entre eles”, disse Dai, professor de física e astronomia em Rice. “A mudança macroscópica é evidente, mas as origens microscópicas do comportamento estão abertas à interpretação, em grande parte porque há muitas variáveis ​​em jogo, e a relação entre elas é simultaneamente sinérgica e não-linear”.
Dai afirma que duas escolas de pensamento “se desenvolveram desde o início, um deles foi o campo itinerante, que argumenta que ambos os estados, em última instância, surgem de elétrons itinerantes. Afinal, esses materiais são metais, mesmo que sejam metais pobres”. O outro campo é o localizado, que argumenta que a física fundamentalmente nova surge devido às interações elétron-elétron no ponto crítico em que os materiais transitam de uma fase para a outra.
As medidas do novo material suportam a teoria localizada. Este sistema é o primeiro membro de uma classe de supercondutores à base de ferro chamados pnictídeos, que podem ser ajustados entre duas fases concorrentes: a fase supercondutora e um ‘isolante de Mott’ na qual os elétrons ficam bloqueados e não fluem.



A estrutura cristalina do novo material em camadas inclui listras alternadas de ferro (azul) e cobre (vermelho). O striping é crítico para a utilidade do material na explicação das origens da supercondutividade de alta temperatura. Crédito: Yu Song/Rice University


“A descoberta que Yu Song fez é que este material é mais correlacionado, o que é evidente devido à fase isolante de Mott”, disse Dai. “Esta é a primeira vez que alguém relata um supercondutor de ferro que pode ser continuamente sintonizado da fase supercondutora à fase isolante de Mott”.
“Nós mostramos que se a interação era fraca, mesmo substituindo 50% do ferro com cobre ainda não seria suficiente para produzir o estado isolante”, disse Si. “O fato de que nossos experimentalistas conseguiram transformar o sistema em isolante de Mott, fornece evidência direta de fortes interações elétron-elétron nos pnictídeos. Isto é um importante passo porque sugere que a supercondutividade deve estar amarrada com estas fortes correlações de elétrons”.



terça-feira, 13 de dezembro de 2016

Físicos manipulam vórtices de Abrikosov



Os vórtices distribuídos aleatoriamente na amostra supercondutora (esquerda) foram reposicionados em um padrão formando as letras “AV”, que significa ‘Abrikosov vórtices’ (à direita). Crédito: Instituto de Física e Tecnologia de Moscou (MIPT)



Um grupo de nanofotônica liderado pelo Prof. Brahim Lounis da Universidade de Bordeaux, incluindo cientistas do MIPT, realizou uma experiência única envolvendo a manipulação óptica de vórtices individuais de Abrikosov em um supercondutor. No artigo publicado na Nature Communications, os cientistas mencionam a possibilidade de projetar novas unidades lógicas baseadas em princípios quânticos para uso em supercomputadores.
Quando um material transita para o estado supercondutor, os campos de fluxo magnético são expulsos do seu volume. Um supercondutor tem todas as linhas de campo magnético ejetadas do seu interior ou permite a penetração parcial do campo magnético. O fenômeno da penetração parcial foi explicado em 1957 por Alexei Abrikosov, pelo qual recebeu o Prêmio Nobel de Física em 2003. Um material que não exibe uma expulsão completa do campo magnético é referido como um supercondutor tipo II. Abrikosov também demonstrou que esses supercondutores só podem ser penetrados por unidades de fluxo magnético discreto, um quantum de fluxo magnético de cada vez. Como o campo dentro de um supercondutor cresce mais forte, dá origem aos loops de corrente cilíndrica conhecidos como vórtices Abrikosov.
“Os supercondutores dtipo II são usados ​​em várias aplicações, desde a medicina até a energia e outras indústrias, e suas propriedades são determinadas pela ‘matéria de vórtice’, o que torna a pesquisa de vórtices e encontrar maneiras de manipulá-los muito importantes para a física moderna”, diz Ivan Veshchunov, um dos autores do estudo e pesquisador do Laboratório de Fenômenos Quânticos Topológicos em Sistemas Supercondutores do MIPT.
Para manipular os vórtices de Abrikosov, os cientistas usaram um feixe de laser focalizado. Este tipo de controle óptico de vórtice é possível pela tendência dos vórtices serem atraídos para as regiões de temperatura mais elevada num supercondutor (neste caso, um filme de nióbio resfriado a -268ºC). Os hotspots (‘pontos quentes’) necessários podem ser criados pelo aquecimento do material com um laser. No entanto, é crucial definir a potência correta do laser, uma vez que o aquecimento do material destrói suas propriedades supercondutoras.
Como os vórtices atuam como quanta de fluxo magnético, eles podem ser usados ​​para moldar o perfil de fluxo magnético geral, permitindo que os físicos realizem várias experiências com supercondutores. Enquanto uma rede de vórtices triangular ocorre naturalmente em certos campos magnéticos, outros tipos de redes (e dispositivos como lentes de vórtice) podem ser criados movendo vórtices ao redor.
O método de manipulação de vórtices no estudo pode ser usado na computação quântica para o desenvolvimento de elementos lógicos quânticos de fluxo único (RSFQ), controlados opticamente. Esta tecnologia é vista como promissora para o projeto de memória super-rápida para computadores quânticos. Os elementos lógicos baseados em RSFQ já são usados ​​em conversores digital-analógico e analógico-digital, magnetômetros de alta precisão e células de memória. Vários protótipos de computadores baseados nessa tecnologia foram desenvolvidos, incluindo o FLUX-1 projetado por uma equipe de engenheiros dos EUA. No entanto, os elementos lógicos RSFQ nestes computadores são em grande parte controlados por impulsos elétricos. A lógica controlada opticamente é uma tendência emergente nos sistemas supercondutores.
As experiências realizadas pelos cientistas poderiam ser aplicadas em pesquisas futuras sobre os vórtices de Abrikosov. Os físicos ainda têm de investigar os detalhes de como o aumento da temperatura age para ‘soltar’ os vórtices de seus locais e colocá-los em movimento. Mais pesquisas sobre a dinâmica de vórtices em estruturas de Abrikosov provavelmente seguirão. Esta linha de pesquisa é fundamental para a compreensão da física dos supercondutores, bem como para avaliar as perspectivas de novos tipos de componentes de microeletrônica.





quarta-feira, 23 de novembro de 2016

Tecnologias Quânticas: Soquete para conectar processadores quânticos

Redação do Site Inovação Tecnológica - 21/11/2016


 O soquete permite conectar inúmeros bits quânticos supercondutores, viabilizando a construção de processadores grandes. [Imagem: University of Waterloo]



Conector de qubits


Uma equipe internacional, trabalhando na Universidade de Waterloo, no Canadá, desenvolveu uma nova técnica de fiação capaz de conectar e controlar bits quânticos supercondutores, uma das técnicas de computação quântica em estágio mais avançado de desenvolvimento.
O dispositivo de conexão representa um passo importante para a construção de módulos de processamento e armazenamento que possam ser interconectados para viabilizar um computador quântico de grande porte, com um número de bits muito maior do que as demonstrações realizadas em laboratório até agora.
“O soquete quântico é um método de fiação que usa fios tridimensionais montados sobre pinos com molas para endereçar qubits individuais,” explicou Jeremy Béjanin, principal responsável pela construção do dispositivo.
“A técnica conecta a eletrônica clássica com os circuitos quânticos, e é extensível muito além dos limites atuais, de um a possivelmente alguns milhares de qubits,” completou Béjanin.


Conexão do quente ao frio


Para controlar (gravar) e medir (ler) os qubits supercondutores, são usados pulsos de micro-ondas. Esses pulsos devem ser enviados, das fontes geradoras dedicadas, até os qubits, por meio de uma rede de cabos adequados. Esses cabos devem fazer a conexão entre a eletrônica de temperatura ambiente de controle e o ambiente frio do criostato onde ficam os bits supercondutores.
O que a equipe realizou foi justamente a construção dessa rede de cabos, uma infraestrutura complexa e considerada até agora uma barreira substancial à ampliação da escala dos processadores quânticos.


Bibliografia:
Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket
Jeremy H. Béjanin, Thomas G. McConkey, John R. Rinehart, Carolyn T. Earnest, Corey Rae H. McRae, Daryoush Shiri, James D. Bateman, Yousef Rohanizadegan, B. Penava, P. Breul, S. Royak, M. Zapatka, A. G. Fowler, Matteo Mariantoni
Physical Review Applied
Vol.: 6, 044010
DOI: 10.1103/PhysRevApplied.6.044010


Fonte: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=tecnologias-quanticas-soquete-processadores-quanticos&id=010110161121&ebol=sim#.WDWhheYrKyI



quarta-feira, 14 de setembro de 2016

Computação quântica sem qubits usa fótons tirados do nada

Redação do Site Inovação Tecnológica -  09/09/2016


Ilustração artística de três fótons emaranhados tirados do vácuo quântico - eles são usados como substitutos para os qubits. [Imagem: Antti Paraoanu]


Rodopios
Se você ainda não se acostumou à ideia do vácuo quântico e sua capacidade de fazer a matéria surgir do nada, um novo conceito para o uso prático dessa propriedade, de fato muito estranha, pode fazer sua cabeça rodar de vez.
A ideia, que é essencialmente uma abordagem alternativa e muito mais radical para a computação quântica, consiste em usar as partículas que emergem do vácuo quântico para fazer cálculos.
Ou seja, você não errará muito se disser que é uma "computação que emerge do nada", ou, como se trata de uma computação que utiliza fótons virtuais tornados reais, uma computação com "cores que surgem da escuridão".

Produção de fótons a partir do vácuo
Um grupo de físicos da Universidade de Aalto, na Finlândia, demonstrou experimentalmente que os fótons que emergem do vácuo quântico podem ser usados para codificar informações e fazer cálculos, substituindo os qubits por um novo tipo de computação quântica, diferente dos sistemas ópticos mais comumente desenvolvidos até agora.
A equipe usou sensores magnéticos extremamente sensíveis, chamados SQUIDs (sigla em inglês para Dispositivos Supercondutores de Interferência Quântica), para criar um ressonador, um dispositivo que oscila naturalmente em frequências definidas.
Esse ressonador supercondutor foi posto para funcionar a uma temperatura próxima do zero absoluto, quando cessa virtualmente qualquer movimento térmico. Visto de outro modo, este estado corresponde à mais completa escuridão, já que não está presente nenhum fóton - aqui nos referindo a uma partícula real da radiação eletromagnética, como a luz visível ou micro-ondas.
E é aí, nesse estado conhecido como vácuo quântico, que se observam flutuações que trazem à existência fótons virtuais, ou partículas que surgem, se recombinam e desaparecem em períodos de tempo muito curtos.

Esquema do dispositivo usado pela equipe para gerar fótons a partir da escuridão e usá-los para fazer cálculos. [Imagem: Pasi Lahteenmaki et al. - 10.1038/ncomms12548]

Computação sem bits
Os pesquisadores finlandeses conseguiram converter esses fótons virtuais emergindo do vácuo quântico em fótons reais de radiação de micro-ondas, que podem ser produzidos com diferentes frequências, ou cores, usando o ressonador. Em outras palavras, assim como os experimentos anteriores haviam mostrado que o vácuo quântico é mais do que a total ausência de matéria, visto desse modo pode-se dizer que a escuridão também é mais do que a mera ausência de luz.
A grande novidade é que os fótons de micro-ondas já nascem entrelaçados, ou seja, com uma conexão íntima entre eles. E o entrelaçamento é uma das propriedades mais exploradas pela computação quântica.
Como essas correlações entre os fótons podem ser geradas de forma controlada pelo ressonador, o sistema na verdade dispensa os qubits tradicionais, lançando uma nova abordagem para a computação quântica.
“Isso tudo sugere a possibilidade de utilizar as diferentes frequências para a computação quântica. Os fótons de diferentes frequências vão desempenhar um papel semelhante ao dos registradores nos computadores clássicos, e operações de portas lógicas poderão ser realizadas entre eles,” explicou o professor Sorin Paraoanu.
“Utilizando os sinais de micro-ondas multifrequenciais, podemos adotar uma abordagem alternativa [para a computação quântica] que cria portas lógicas como sequências de medições quânticas. Além disso, se usarmos os fótons criados no nosso ressonador, os bits quânticos físicos, ou qubits, tornam-se desnecessários,” acrescentou Pertti Hakonen, outro membro da equipe.


Bibliografia:
Coherence and correlations from vacuum fluctuations in a microwave superconducting cavity. Pasi Lahteenmaki, Gheorghe Sorin Paraoanu, Juha Hassel, Pertti J. Hakonen. Nature Communications, Vol.: 7, Article number: 12548
DOI: 10.1038/ncomms12548



sexta-feira, 13 de maio de 2016

Filmes finos exibem supercondutividade de alta temperatura (Thin Films Become Superconductive At Higher Temperatures)



 
Este filme fino à base de ferro conduz eletricidade a 35 °C acima do zero absoluto, sem a necessidade de dopagem.


 
Pesquisadores no Japão descobriram uma transição para o estado supercondutor em um filme fino de ferro e selênio a uma temperatura muito acima do zero absoluto, um potencial ganho para o campo da supercondutividade.
       Eles também conseguiram desvendar o mecanismo pelo qual isto ocorre: a acumulação de elétrons em uma densidade extremamente elevada sobre a superfície da película. A alta temperatura no qual a transição ocorre, -238 °C ou 35 °C acima do zero absoluto, amplia a gama de possíveis experiências e das aplicações em supercondutividade.
       Além disso, os pesquisadores mostraram que o filme de seleneto de ferro de aproximadamente dez nanômetros de espessura exibe uma temperatura de transição de 35 K, quatro vezes maior que a temperatura para o mesmo tipo de película com uma espessura de 110 nm.
       “Nós usamos um transistor de camada dupla com uma tensão de 5,5 V aplicados em filmes finos epitaxiais de FeSe para induzir o estado supercondutor”, disse Hidenori Hiramatsu, co-autor da pesquisa.
       “Descobrimos que os elétrons tinham se acumulado a um nível muito elevado no canal FeSe, o que causou a transição de alta temperatura para a supercondutividade. O fato de filmes finos de FeSe mudarem de isolante para supercondutor a 35 K significa que podemos examinar a indução de supercondução sem ter que realizar a dopagem com impurezas, que podem degradar a estrutura do material e os portadores de carga”, afirma o principal autor do estudo, Kota Hanzawa.
       “Nós agora devemos ser capazes de determinar a mais alta temperatura absoluta em que a transição para a supercondutividade pode ocorrer. Isso pode beneficiar pesquisas e aplicações em todo o nosso campo”.





quarta-feira, 20 de abril de 2016

Está pronto o primeiro magneto do futuro do LHC




Redação do Site Inovação Tecnológica -  15/04/2016


Foram 10 anos do projeto à construção deste eletroímã supercondutor de 1,5 metro. Agora será necessário construir uma versão muito maior. [Imagem: G. Ambrosio/P. Ferracin/E. Todesco]



LHC do futuro

       Se você acha que o LHC, o maior acelerador de partículas e o maior experimento científico da história contém o supra-sumo da tecnologia, você está certo.
       Mas também é necessário saber que os físicos e engenheiros do CERN acabam de terminar o protótipo de uma das peças fundamentais para o “LHC do futuro”.
       A proposta é que dezenas de magnetos supercondutores similares a este protótipo sejam instalados em uma atualização radical da tecnologia do LHC, em 2026, que deverá aumentar a luminosidade do acelerador de partículas em 10 vezes.
       Construído por uma equipe internacional, o eletroímã supercondutor, chamado “Quadrupolo MQXF1”, mede apenas 1,5 metro de comprimento, mas sua versão final deverá substituir 5% dos ímãs responsáveis pela focalização e direção dos feixes de partículas quando o LHC se transformar no “LHC de Alta Luminosidade”, ou HL-LHC (High-Luminosity Large Hadron Collider).


Supercondutor de nióbio

       Os ímãs do atual LHC são feitos de uma liga de nióbio e titânio (NbTi), um supercondutor que pode operar dentro de um campo magnético de até 10 teslas antes de perder a sua supercondutividade. Este novo ímã é feito de nióbio e estanho (Nb3Sn), um supercondutor capaz de transportar corrente sem resistência através de um campo magnético de até 20 teslas.
       Mas o ganho também tem seus custos. O Nb3Sn precisa ser recozido a 650º C para que sua estrutura seja alterada e ele se torne um supercondutor. O problema é que isso também o torna tão quebradiço quanto uma cerâmica.



Detalhe do magneto, onde se podem ver as bobinas supercondutoras. [Imagem: Reidar Hahn/Fermilab]



       Assim, construir um ímã desse tamanho usando um material mais frágil do que uma xícara de chá não é uma tarefa fácil. Os físicos e engenheiros gastaram 10 anos projetando e aperfeiçoando um processo que finalmente permitiu formatar, recozer e estabilizar as bobinas.
       “Nós estamos lidando com uma nova tecnologia que pode ir muito além do que era possível quando o LHC foi construído. Esta nova tecnologia magnética irá tornar possível o projeto do HL-LHC,” disse Giorgio Apollinari, membro da equipe.
       Agora a equipe vai usar seu novo processo produtivo para fabricar ímãs cada vez maiores, até atingir a escala necessária para seu uso no LHC, cujos magnetos supercondutores medem 14,3 metros.




Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!