Aplicações da Supercondutividade - O skate voador da Lexus

terça-feira, 15 de dezembro de 2015

Pesquisadores descobrem uma nova dimensão na supercondutividade de alta temperatura (Researchers discover a new dimension to high-temperature superconductivity)





Nesta representação artística, um pulso magnético (direita) e de raios-X de luz laser (à esquerda) convergem para um supercondutor de alta temperatura para estudar o comportamento de seus elétrons. (SLAC National Accelerator Laboratory)


Pesquisadores do Departamento de Energia dos EUA e do SLAC National Accelerator Laboratory combinando poderosos pulsos magnéticos com alguns dos mais brilhantes raios-x do planeta, descobriram um surpreendente arranjo 3-D de elétrons em um supercondutor de alta temperatura.
       Esta reviravolta inesperada é um marco importante na jornada de 30 anos para entender melhor como materiais supercondutores de alta temperatura conduzem eletricidade sem resistência a temperaturas centenas de graus centígrados acima dos supercondutores convencionais.
       O estudo também resolve uma aparente incompatibilidade em dados experimentais e traz um novo rumo para o completo mapeamento do comportamento dos elétrons sob diferentes condições nestes materiais exóticos. Os pesquisadores têm um objetivo final de ajudar na concepção e desenvolvimento de novos supercondutores que funcionam em temperaturas mais quentes.

Física “Totalmente inesperada”
“Isso foi totalmente inesperado, e também muito emocionante. Este experimento identificou um novo ingrediente a considerar neste campo de estudo. Ninguém tinha visto esta imagem 3-D antes”, disse Jun-Sik Lee, um cientista do SLAC e um dos líderes do experimento. “Este é um passo importante na compreensão da física dos supercondutores de alta temperatura”.

A nova onda de supercondutividade
O efeito 3-D que os cientistas observaram em um material supercondutor conhecido como YBCO (óxido de ítrio, bário e cobre), é um tipo recentemente descoberto de “onda densidade de carga” (charge density wave). Esta onda não tem o movimento de oscilação de uma onda de luz ou uma onda sonora; ela descreve um arranjo estático e ordenado de aglomerados de elétrons em um material supercondutor. Sua coexistência com a supercondutividade é desconcertante para os pesquisadores porque parece entrar em conflito com os pares de elétrons que se movem livremente que definem a supercondutividade.
       A versão 2-D dessa onda foi vista pela primeira vez em 2012 e tem sido estudada extensivamente. O recente experimento LCLS revelou uma versão separada 3-D que aparece mais forte do que a forma 2-D e intimamente ligada tanto ao comportamento 2-D como com a supercondutividade do material.
       O experimento levou vários anos para ser feito e exigiu a experiência internacional para preparar amostras especializadas e construir um poderoso ímã que produziu pulsos magnéticos compactados de milésimos de segundo. Cada pulso era 10-20 vezes mais forte do que aqueles em uma típica máquina de ressonância magnética.

A poderosa combinação de magnetismo e luz
Esses pulsos magnéticos curtos e intensos suprimiram a supercondutividade nas amostras de YBCO e forneceu uma visão mais clara dos efeitos da onda de densidade de carga. Eles foram imediatamente seguidos em intervalos precisamente cronometrados por pulsos de laser de raios-x, o que permitiu aos cientistas medir os efeitos de onda.
“Esta experiência é uma maneira completamente nova de usar o LCLS que abre a porta para uma nova classe de experimentos futuros”, disse Mike Dunne, diretor do LCLS.
       “Eu estava animado com este experimento há muito tempo”, disse Steven Kivelson, um professor de física da Universidade de Stanford que contribuiu para o estudo e tem pesquisado supercondutores de alta temperatura desde 1987.
       Kivelson disse que o experimento estabelece limites muito claros sobre a temperatura e a intensidade do campo magnético no qual o efeito 3-D recém-observado emerge. “Não há nada vago sobre isso”, disse ele. “Você agora pode fazer uma declaração definitiva: Neste material existe uma nova fase”.
       O experimento também acrescenta peso à evidência crescente de que ondas de densidade de carga e supercondutividade “podem ​​ser pensados como dois lados da mesma moeda”, acrescentou.

Em busca de links comuns
Mas também está claro que o YBCO é incrivelmente complexo, e um mapa mais completo de todas as suas propriedades é necessário para chegar a qualquer conclusão sobre o que mais importa para a sua supercondutividade, disse Simon Gerber e Hoyoung Jang, principais autores do estudo.
       Experimentos adicionais são necessários para fornecer uma visualização detalhada do efeito 3-D, e para saber se o efeito é universal em todos os tipos de supercondutores de alta temperatura, disse Wei-Sheng Lee, que contribuiu com o estudo. “As propriedades deste material são muito mais ricas do que pensávamos”, disse Lee. “Continuamos a fazer novas e surpreendentes observações à medida que desenvolvemos novas ferramentas experimentais”, acrescentou Zhu.












Nenhum comentário:

Postar um comentário

Seu comentário será avaliado e só será exibido após aprovação.

Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!