Aplicações da Supercondutividade - O skate voador da Lexus

Mostrando postagens com marcador maglev. Mostrar todas as postagens
Mostrando postagens com marcador maglev. Mostrar todas as postagens

quinta-feira, 14 de setembro de 2017

Projeto brasileiro de trem de levitação magnética é o primeiro a transportar passageiros com essa tecnologia



Projeto da Coppe/UFRJ aguarda resposta para pedido de certificação internacional para poder ser 'exportado'




Maglev-Cobra, o trem de levitação magnética da Coppe/UFRJ (Foto: Divulgação Coppe/UFRJ)



Um trem de levitação magnética por supercondutividade, testado no Rio há um ano e sete meses, está à espera do resultado de um pedido de certificação internacional, que poderá abrir caminho para a sua produção industrial e comercialização. O veículo, criado pela Coppe/UFRJ e em funcionamento na Cidade Universitária, na Ilha do Fundão, é o primeiro no mundo a transportar passageiros com essa tecnologia. A composição, que circula sobre trilhos imantados, com baixo consumo de energia e sem emissão de poluentes, já despertou o interesse da China, que discute um acordo de cooperação com a universidade.
Desde fevereiro de 2016, o chamado Maglev–Cobra já transportou cerca de oito mil pessoas. As viagens pela linha experimental de 200 metros são às terças-feiras, das 11h às 15h, e ligam dois prédios do Centro Tecnológico da UFRJ. No trecho, ele atinge 12km/h, mas, em área urbana, poderá chegar a 100km/h.
Nos testes, o projeto da Coppe/UFRJ não apresentou problemas. A próxima etapa, a de certificação, é conduzida por um órgão independente.
“O processo de certificação tem um custo relativamente alto. Recorremos a um fundo de apoio do BNDES. A proposta está em avaliação”, explica o professor da Coppe/UFRJ Richard Stephan, coordenador do projeto. “O Inmetro ainda não está preparado para esse tipo de certificação, mas a TÜV, da Alemanha, poderia fazê-lo.”
O Maglev–Cobra está no nível sete da escala TRL, que vai até nove e é adotada pela Nasa para medir o grau de amadurecimento de uma nova tecnologia. Atingir o nível máximo indica que o projeto está pronto para ser comercializado.
A tecnologia criada pela Coppe/UFRJ dá sinais de que pode ser uma das soluções para a mobilidade urbana no mundo. O Japão, a Coreia do Sul e a China já dispõem de veículos de levitação magnética em operação comercial (Pequim deverá ganhar uma segunda linha até o fim do ano). Mas há diferenças entre o Maglev–Cobra e os trens da Ásia.
“Ele usa uma técnica de levitação estável que dispensa controladores, sensores e atuadores (dispositivos que movimentam uma carga). É um sistema mais confiável, com menos peso e volume”, diz Stephan.
Hoje, trens semelhantes em operação comercial no mundo usam levitação eletromagnética, que exige um sistema complexo para manter a distância correta entre o trilho e o veículo. A suavidade da operação do Maglev–Cobra impressiona, principalmente quem está acostumado com as composições da SuperVia e do metrô.
“Parece que estamos dentro de algo muito leve. Não faz barulho. É uma viagem muito suave”, disse Sara Braga, de 15 anos, aluna da rede estadual, que visitou a Coppe na semana passada.
        Segundo Stephan, o Maglev–Cobra poderia começar a rodar no Rio ligando a Rodoviária Novo Rio ao metrô da Praça Onze ou do Estácio. Outra possibilidade seria circular entre o shopping Nova América e a Ilha do Governador. Num segundo momento, do Recreio à Barra ou ao longo da Linha Amarela. Especialistas da Coppe já avaliam esses percursos.




sexta-feira, 19 de junho de 2015

Levitação e magnetismo


O projeto brasileiro do MagLev, trem de passageiros que funciona por meio da tecnologia de levitação magnética, envolve importantes conceitos de física. Professor explica na CH os fenômenos que permitem a esse veículo se mover sem tocar nos trilhos.

Por: Beto Pimentel

Publicado em 28/05/2015 | Atualizado em 28/05/2015


Cientistas holandeses já fizeram um sapo levitar com o auxílio de um campo magnético gerado por uma espiral. (foto: Cortesia Lijnis Nelemans/ High Field Magnet Lab/ Radboud University Nijmegen)


       “Wingardium leviosa”, o encanto da levitação, é uma das primeiras magias que os alunos de Hogwarts aprendem a conjurar na famosa série de livros que narra as aventuras do aprendiz de bruxo Harry Potter. Mas, no mundo dos ‘trouxas’ (o mundo real), levitar requer um pouco mais de engenho: é preciso exercer alguma força de baixo para cima naquilo que se quer fazer levitar, compensando a força da gravidade.
       Um livro pousado sobre uma mesa está levitando: como ele não a atravessa nem sobe em direção ao teto, seu peso, então, está sendo compensado por outra força, para cima, de mesma intensidade, a qual denominamos ‘normal’.
       Porém, a real natureza da força ‘normal’ é a repulsão entre cargas elétricas de mesmo sinal. Quando a atração gravitacional puxa o livro em direção à mesa, os elétrons das camadas externas dos átomos da superfície do livro repelem e são repelidos pelos elétrons das camadas mais superficiais da mesa. E é essa repulsão simultânea de ‘zilhões’ de elétrons que constitui a força normal. Assim, o livro efetivamente flutua sobre um ‘colchão’ de elétrons.
       A força elétrica cai com o quadrado da distância; por isso, tanto a repulsão entre os prótons (positivos) do livro e aqueles da mesa quanto a atração entre os prótons de um corpo e os elétrons do outro são insignificantes para compor a força ‘normal’, pois essas cargas estão separadas por ‘grandes’ distâncias: em média, um núcleo é 100 mil vezes menor que o átomo.
       Além da repulsão eletrostática entre os elétrons, entra em cena também o princípio de exclusão de Pauli – homenagem ao físico austríaco Wolfgang Pauli (1900-1958). Esse princípio da mecânica quântica (teoria que lida com os fenômenos atômicos e subatômicos) proíbe que os elétrons do livro e os da mesa ocupem o mesmo estado – dito de forma simples, impede que ocupem ‘o mesmo lugar no espaço’ –, dando origem a outra força repulsiva de curto alcance entre os elétrons.
       Mas o livro não levita ‘de verdade’, certo? De fato, não. Se assim fosse, nosso cotidiano estaria repleto de levitação, até ao caminharmos pela rua! Trata-se apenas do que chamamos forças ‘de contato’. Algo semelhante dá origem ao atrito. Ao empurrarmos o livro para um lado, percebemos que é preciso fazer uma força para vencer o atrito com que os elétrons da superfície microscopicamente irregular da mesa tentam empurrá-lo de volta à posição original.

Levitação... de verdade

Então, para fazer um corpo levitar de verdade (sem aspas), precisaríamos elevá-lo a uma distância considerável – pelo menos, alguns milímetros –, para ficarmos livres do atrito com a superfície. Aí, sim, ao aplicarmos nele uma pequena força, ele se movimentaria sem atrito – e a única limitação seria a resistência do ar, relevante só para grandes velocidades.
Mas como obter aquela elevação? Poderíamos, por exemplo, amplificar a repulsão eletrostática: se a carga elétrica (de mesmo sinal) de dois corpos for suficientemente grande, a força de repulsão entre eles faria um deles levitar sobre o outro.
Porém, qualquer contato acidental poderia descarregar um dos corpos, diminuindo ou eliminando a força e, assim, interrompendo a levitação. Além disso, para valores muito altos de carga, o próprio ar passaria a conduzir eletricidade, e surgiriam pequenas (ou grandes!) centelhas, que drenariam a carga dos corpos eletrizados, cessando o efeito.
Um modo mais seguro de obter o mesmo resultado seria usar, em vez da força elétrica, a força magnética. Nos ímãs, polos de mesma natureza se repelem, e polos opostos se atraem. E, se a intensidade dessa repulsão for grande, um ímã pode fazer o outro levitar.
Há, claro, um problema de estabilidade: qualquer pequeno desvio do alinhamento entre os dois ímãs destruiria o equilíbrio. Mas isso pode ser resolvido com arranjos estáveis de vários ímãs, como comprovam os vários trens de levitação magnética atualmente em operação no mundo, inclusive no Brasil.
De fato, nem seria necessário usar dois ímãs. Bastaria um ímã e, por exemplo, um bloco de material ferromagnético, pois o campo magnético do ímã magnetizaria o material, transformando-o em um segundo ímã (figura 1). O problema, nesse caso, é que a força entre ambos seria atrativa. Portanto, para que houvesse levitação, o material ferromagnético teria que estar por baixo do ímã, em vez de por cima.



Um material ferromagnético, na presença de um campo magnético (no caso, induzido por um eletroímã), transforma-se em um ímã temporário. (ilustração: Luiz Baltar)


       Materiais diamagnéticos – que são repelidos por campos magnéticos – também poderiam ser alinhados para produzir a levitação, pois a magnetização os transformaria em um ‘ímã invertido’, levando à repulsão magnética. Porém, em geral, isso requer campos magnéticos muito intensos.

Eletroímãs e supercondutores

Os chamados eletroímãs também permitem gerar levitação. Quando um fio condutor é percorrido por uma corrente elétrica, ele cria em torno de si um campo magnético. Se o fio for enrolado, formando uma ou mais espiras, as linhas do campo magnético se assemelham às de um ímã permanente – daí, o termo eletroímã. Dependendo do sentido em que a corrente percorre a espiral, o polo norte é produzido em um ou em outro lado da espiral (figura 2).


Dependendo do sentido da corrente elétrica, o polo norte é produzido num ou noutro lado da espiral. (ilustração: Luiz Baltar)


       Usando esse efeito, cientistas holandeses já fizeram levitar um sapo e outros bichos pequenos, pois a água do corpo dos animais é formada por moléculas polares, que apresentam comportamento diamagnético. Mas, para isso, é preciso campos magnéticos imensos, ou seja, correntes elétricas muito altas percorrendo as espirais.
       O uso de materiais supercondutores – que se comportam como diamagnéticos ideais – possibilita a levitação com campos magnéticos comparativamente baixos. O problema, no entanto, é manter o supercondutor a temperaturas muitíssimo baixas (cerca de -200°C!).
       Uma coisa é fazer levitar. Outra, porém, é mover o trem. A solução engenhosa para o problema é o motor de indução linear. A ideia básica consiste em manipular o sentido da corrente elétrica dos eletroímãs colocados ao longo dos trilhos. Cada um desses eletroímãs ora atrai um ímã preso ao trem – quando o ímã se aproxima dele –, ora o repele – quando o ímã acaba de passar por ele. Desse modo, o trem é continuamente impelido para a frente.
       É, sem dúvida, uma sincronia complexa, mas é só uma questão de manipular convenientemente as correntes nos eletroímãs. Esse tipo de arranjo – usado, por exemplo, para puxar para cima os carrinhos de montanhas-russas modernas – permite controlar a corrente nos eletroímãs, para atingir não só forças de tração intensas, mas também grandes acelerações. A Nasa (agência espacial dos EUA) já está testando um foguete cujo primeiro estágio seria substituído por um sistema semelhante, barateando o lançamento de grandes cargas para o espaço.


Beto Pimentel
Colégio de Aplicação
Universidade Federal do Rio de Janeiro





segunda-feira, 13 de outubro de 2014

Novos supercondutores para aplicações em MagLev (new superconductors for Maglev applications)




   Um supercondutor de alta temperatura levita aproximadamente a 3 centímetros ao longo de um trilho magnético em uma demonstração da nova tecnologia da SuperOx.   Um novo material supercondutor da SuperOx pode revolucionar os dispositivos MagLev (levitação magnética), tornando sua produção consideravelmente mais fácil, barata e eficaz. O presidente do Conselho de Administração da SuperOx, Andrey Vavilov, resumiu sucintamente o impacto sobre a indústria de MagLev da nova fita supercondutora: “Nós mudamos as regras do jogo.”  O antecessor Antes da inovação, as cerâmicas de alta temperatura necessárias para levitação magnética levavam cerca de quatro meses para serem obtidas. Os próprios produtos - que não poderiam ser fabricados em grandes quantidades - eram quebradiços, com uma quantidade elevada de materiais de terras raras. O método era caro, demorado e ineficaz na criação das cerâmicas.  Apesar das suas desvantagens, as cerâmicas de alta temperatura têm sido utilizadas em protótipos de mancais magnéticos pela Nexans/Siemens; armazenamento de energia pela Boeing; sistemas de transportes pela Evico GmbH; dispositivos de manipulação sem contato pela FESTO. Por estes protótipos, uma tecnologia nova, mais eficaz era necessária pela indústria MagLev.  A Tecnologia A nova tecnologia da SuperOx utiliza fitas de supercondutores de alta temperatura, com a capacidade de criar produtos em multi-camadas que podem assumir a forma de placas finas, cilindros ou tijolos para satisfazer as necessidades finais do projeto. Estes produtos podem erguer mais de 35 kg usando apenas 20 metros de fita de supercondutores de alta temperatura.  A tecnologia é muito mais avançada do que a cerâmica de alta temperatura, usando quantidades muito baixas de materiais de terras raras, mas com um alto desempenho de condutividade. O processo de fabricação é rápido e relativamente fácil em comparação com outras tecnologias, tornando este um passo significativo para o mercado MagLev.  Num futuro próximo, a SuperOx apresentará a tecnologia que deve ser capaz de levitar uma carga de 100 kg, e num futuro mais distante, uma carga de 1 tonelada.  Os resultados Levitação magnética estável pode ser criada com o uso de materiais supercondutores. Ao usar esta nova tecnologia, as empresas do setor poderão utilizar materiais supercondutores de alta temperatura em qualquer formulação que necessitam, e será muito mais econômica que os métodos anteriores. Todo o mercado MagLev será significativamente melhorada com a introdução deste novo produto, fazendo desta descoberta um verdadeiro sucesso.   Fonte: http://www.prweb.com/releases/2014/10/prweb12212371.htm

Um supercondutor de alta temperatura levita aproximadamente a 3 centímetros ao longo de um trilho magnético em uma demonstração da nova tecnologia da SuperOx.


Um novo material supercondutor da SuperOx pode revolucionar os dispositivos MagLev (levitação magnética), tornando sua produção consideravelmente mais fácil, barata e eficaz. O presidente do Conselho de Administração da SuperOx, Andrey Vavilov, resumiu sucintamente o impacto sobre a indústria de MagLev da nova fita supercondutora: “Nós mudamos as regras do jogo.”

O antecessor
Antes da inovação, as cerâmicas de alta temperatura necessárias para levitação magnética levavam cerca de quatro meses para serem obtidas. Os próprios produtos - que não poderiam ser fabricados em grandes quantidades - eram quebradiços, com uma quantidade elevada de materiais de terras raras. O método era caro, demorado e ineficaz na criação das cerâmicas.
        Apesar das suas desvantagens, as cerâmicas de alta temperatura têm sido utilizadas em protótipos de mancais magnéticos pela Nexans/Siemens; armazenamento de energia pela Boeing; sistemas de transportes pela Evico GmbH; dispositivos de manipulação sem contato pela FESTO. Por estes protótipos, uma tecnologia nova, mais eficaz era necessária para a indústria MagLev.

A Tecnologia
A nova tecnologia da SuperOx utiliza fitas de supercondutores de alta temperatura, com a capacidade de criar produtos em multi-camadas que podem assumir a forma de placas finas, cilindros ou tijolos para satisfazer as necessidades finais do projeto. Estes produtos podem erguer mais de 35 kg usando apenas 20 metros de fita de supercondutores de alta temperatura.
        A tecnologia é muito mais avançada do que a cerâmica de alta temperatura, usando quantidades muito baixas de materiais de terras raras, mas com um alto desempenho de condutividade. O processo de fabricação é rápido e relativamente fácil em comparação com outras tecnologias, tornando este um passo significativo para o mercado MagLev.
        Num futuro próximo, a SuperOx apresentará a tecnologia que deve ser capaz de levitar uma carga de 100 kg, e num futuro mais distante, uma carga de 1 tonelada.

Os resultados
Levitação magnética estável pode ser criada com o uso de materiais supercondutores. Ao usar esta nova tecnologia, as empresas do setor poderão utilizar materiais supercondutores de alta temperatura em qualquer formulação que necessitam, e será muito mais econômica que os métodos anteriores. Todo o mercado MagLev será significativamente melhorada com a introdução deste novo produto, fazendo desta descoberta um verdadeiro sucesso.



quinta-feira, 2 de outubro de 2014

Maglev-Cobra é aprovado por especialistas




        Em visita técnica ao trem de levitação magnética da Coppe, o Maglev-Cobra, no dia 1º de outubro, especialistas de mais diversos países acompanharam o início da fase de testes da linha experimental aplicada, na Cidade Universitária do Rio de Janeiro. A visita fez parte da programação final da 22ª Conferência Internacional sobre Sistemas de Levitação Magnética e Motores Lineares – Maglev 2014.
“O início da fase de testes do Maglev-Cobra representa uma ruptura de barreira tecnológica para o Brasil. Esta nova etapa tornará esse projeto, que é adequado para o transporte urbano de passageiros, mais visível para a sociedade. O próximo passo será buscar parceiros para que o projeto entre em operação comercial”, afirmou o professor Luiz Pinguelli Rosa, diretor da Coppe/UFRJ.
De acordo com o coordenador do Maglev-Cobra, um dos próximos passos é a realização de testes em linhas maiores. “O Plano Diretor da UFRJ para a Cidade Universitária prevê a implantação de uma linha do Maglev Cobra ligando a estação do BRT da Ilha do Fundão até o Parque Tecnológico da UFRJ”, explicou Richard Stephan, que coordena o Laboratório de Aplicações de Supercondutores (Lasup) da Coppe.


Confira abaixo a opinião dos especialistas que levitaram no Maglev-Cobra



Um dos primeiros conferencistas a embarcar no trem de levitação magnética da Coppe, Kenji Lars Giler, pesquisador da Universidade de Munique, aprovou a operação. “O design é muito dinâmico e o arranque é suave. Achei bem silencioso”, disse.



O consultor norte-americano, Laurence Blow, que abriu o congresso apresentando os projetos de tecnologia maglev ainda não implantados nos Estados Unidos, ressaltou a importância dos testes em protótipos. “A aplicação da tecnologia é muito importante para a confiabilidade do sistema. Com os testes podemos avaliar funções que precisam funcionar conjuntamente: levitação, condução e propulsão. Para tornar um sistema confiável é necessário repetir centenas e centenas de vezes. Essa é a maneira perfeita de fazer isso”, explicou Blow, presidente do Maglev Transport Inc, Arlington, EUA.
Para o professor da Universidade de Leipzig, Alemanha, o Maglev-Cobra precisa agora de investimento para ser instalado nas ruas, beneficiando os cidadãos. “O que o professor Richard fez é muito bom, com grande perspectiva para o futuro. Agora é necessário levar os benefícios dessa tecnologia para a população”, opinou Johannes Klühspies, que também é presidente da International Maglevboard, uma instituição sem fins lucrativos que promove a Tecnologia Maglev.


Berlin será a sede do próximo Congresso

Durante a cerimônia de encerramento, no dia 30 de setembro, no Hotel Windsor, o professor Richard Stephan agradeceu aos patrocinadores e convocou à mesa o professor do Departamento de Energia Avançada, da Universidade de Tóquio, Hiroyuki Ohsaki, em substituição ao presidente do comitê organizador, Eisuke Masada, para receber, eu seu nome, a homenagem por sua contínua contribuição para o desenvolvimento da tecnologia Maglev.
Ohsaki aproveitou a oportunidade para anunciar que a sede da próxima conferência será em Berlin, na Alemanha, em 2016 ou 2017.




quarta-feira, 24 de setembro de 2014

Trem flutuante entra em fase de testes operacionais no próximo dia 1º


PAULO MAURÍCIO COSTA

Rio - O primeiro trem de levitação magnética fabricado no país, o Maglev-Cobra, desenvolvimento pela Coppe, da UFRJ, começará a fase de testes operacionais no próximo dia 1º. Um time de pesquisadores estrangeiros chegará ao Rio no próximo domingo para participar de uma conferência e conhecer o veículo flutuante no trajeto em que ele vai funcionar, os 200 metros compreendidos entre dois centros tecnológicos da Cidade Universitária, na Ilha do Fundão.


O protótipo do veículo da Coppe que se move sem tocar nos trilhos. Foto:  Divulgação

A composição de quatro módulos (1,5 metro cada um), movido a energia elétrica, não emite dióxido de carbono nem quaisquer ruídos e terá capacidade para 30 passageiros — em princípio, os frequentadores do campus universitário. O projeto contempla ainda a instalação de painéis de energia solar capazes de gerar energia suficiente para alimentar o veículo. Durante a primeira etapa de testes e ajustes da máquina, a velocidade do trem será limitada a 20 quilômetros por hora (km/h). Entretanto, segundo os pesquisadores, o veículo poderá alcançar mais de 100 km/h, dependendo da via.
Além dos benefícios ambientais, a tecnologia de flutuação magnética tem vantagens econômicas. Um quilômetro de construção de um trilho do trem de levitação magnética custará um terço do valor necessário para cada quilômetro construído de metrô. Hoje, um quilômetro de metrô subterrâneo custa de R$ 300 a R$ 400 milhões, segundo o professor da PUC Fernando MacDowell, especialista em sistemas metroviários. As obras das estações na Cidade Universitária começaram em abril do ano passado.
Desenvolvido no Laboratório de Aplicações de Supercondutores (Lasup) da Coppe, sob a coordenação do professor Richard Stephan, o Maglev será finalizado em 2015, segundo a instituição. O Maglev-Cobra, de acordo com Stephan, está hoje no nível sete de uma escala de evolução tecnológica até dez utilizada pela Nasa, a Agência Espacial dos Estados Unidos. “Ao atingir a etapa seguinte, o projeto estará pronto para a industrialização”, afirmou Stephan.
O teste do maglev brasileiro, com os especialistas a bordo, vai fechar a 22ª Conferência Internacional sobre Sistemas de Levitação Magnética. Entre os participantes estão Lin Guobin, responsável pelo projeto do maglev chinês, e Kay Hameyer, diretor do Instituto de Máquinas Elétricas da Alemanha. Segundo a Coppe, chineses e alemães compartilham com o Brasil a liderança das pesquisas sobre a levitação magnética aplicada à mobilidade urbana.




segunda-feira, 9 de junho de 2014

SuperMagLev Chinês: o maglev supercondutor asiático (chinese superconducting maglev)




        O primeiro maglev supercondutor tripulado da China foi testado com sucesso pelo Applied Superconductivity Laboratory of Southwest Jiaotong University (Laboratório de Supercondutividade Aplicada da Universidade Jiaotong).



O veículo ‘super-maglev’ fechado em um tubo foi revelado na universidade Jiaotong, cidade de Chengdu, província de Sichuan, na China. Ele foi testado com sucesso pelo Laboratório de Supercondutividade Aplicada, e poderia aumentar ainda mais a velocidade de trens de alta velocidade comercial. Na foto, um estudante indo para um passeio de teste


         O líder do projeto é o Dr. Deng Zigang, que tem desenvolvido a tecnologia há alguns anos. Em março de 2013 ele concluiu o primeiro teste do maglev no anel supercondutor de alta temperatura, que foi semelhante ao que você pode ver aqui, mas sem o tubo fechado. Mas agora a nova linha pode ser ajustada para inaugurar uma nova onda de trens mais rápidos do que nunca antes visto.
      O trem de transporte de passageiros mais rápido do mundo é atualmente o Shanghai Maglev Train, inaugurado em abril de 2004, que pode chegar a 268 milhas (431 km) por hora. A super-levitação magnética, no entanto, pode permitir velocidades ainda maiores. Isso porque, através da utilização de um tubo de vácuo, as limitações de velocidade impostas pela resistência do ar são removidas. Em um artigo sobre o assunto, o Dr. Zigang diz: “Se a velocidade de funcionamento for superior a 400 km por hora, mais de 83% de energia de tração será desperdiçada pela resistência do ar”. E acrescenta: “o ruído aerodinâmico vai ultrapassar 90 decibéis (o padrão ambiental é 75 decibéis)”. A única maneira de quebrar essa barreira é reduzir a pressão do ar no ambiente de funcionamento, o que ele fez no seu tubo, baixando-a para 10 vezes menos do que a pressão atmosférica normal, ao nível do mar. Sistemas ETT (Evacuated Tube Transport - Tubo de Transporte Evacuado) pode permitir que os ‘supermaglev’ alcancem velocidades em uma nova ordem de magnitude, como 3.000 km/h (1.800 milhas), o que poderia ser aplicado a alguns sistemas de lançamento militares ou espaciais.



Dr. Deng Zigang, professor associado do Laboratório de Supercondutividade Aplicada da Universidade Jiaotong, posa com a faixa onde o veículo super-maglev funciona. O círculo, a primeira linha do maglev supercondutor tripulado da China, é de 12 metros de diâmetro


         Para desenvolver o projeto, o Dr. Zigang teve que alcançar duas metas. “A primeira foi desenvolver um veículo maglev numa linha de anel supercondutor de alta temperatura que pudesse acelerar a uma velocidade de 25 km/h”. Esta meta foi alcançada em fevereiro de 2013, levando os pesquisadores a avançar para a próxima fase. “A segunda fase foi cobrir a linha do anel com um tubo de evacuação”, continua Dr. Zigang. “O veículo foi projetado para acelerar a uma velocidade máxima de 50 km/h, sem passageiros. Esta velocidade é limitada pelo pequeno raio do anel do trilho, que é de 6 metros. O significado do projeto é que ele vai ser o primeiro a fazer o protótipo do futuro tubo de transporte de evacuação. Neste momento, estamos realizando testes de evacuação no novo sistema. No futuro próximo vamos divulgar nossas realizações após execução bem sucedida.



Dr. Zigang opera um veículo super-maglev por controle remoto durante o período de experiência. Em um artigo ele afirma que tais sistemas podem atingir velocidades tão altas quanto 1.800 milhas (3.000 km) por hora

sábado, 25 de maio de 2013

Trem brasileiro de levitação magnética começa a ser construído (brazilian magnetic levitation train begins to be constructed)



Com informações da Faperj - 23/05/2013

O trem de levitação magnética possui uma eficiência energética quase 20 vezes maior do que a de um ônibus a diesel. [Imagem: COPPE/UFRJ]

Levitação brasileira

Dentro de um ano, os frequentadores do campus da Universidade Federal do Rio de Janeiro (UFRJ) poderão usar o primeiro trem que levita da América Latina.

Já começaram as obras da construção da estação de embarque do Maglev-Cobra, o trem de levitação magnética da Coppe/UFRJ, que ligará inicialmente os dois centros de tecnologia do campus.

A implantação do Maglev-Cobra é fruto de convênios firmados com o BNDES e com a FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro), envolvendo investimentos de R$ 10,5 milhões.

Desenvolvido no Laboratório de Aplicações de Supercondutores (Lasup) da Coppe, sob a coordenação do professor Richard Stephan, o Maglev-Cobra terá capacidade para transportar até 30 passageiros em quatro módulos, que estão sendo construídos na Cidade Universitária pela empresa Holos.


“O Maglev-Cobra coloca o Brasil em lugar de destaque no desenvolvimento de tecnologias de levitação”, afirma o professor Richard Stephan.

Segundo ele, a China e a Alemanha estão criando, no momento, protótipos em laboratório com essa tecnologia, mas o Brasil já está construindo uma linha operacional.

O veículo que dispensa rodas, não emite ruído e nem gases de efeito estufa, entrará em operação em 2014, antes da Copa do Mundo, percorrendo um trajeto de 200 metros.

Supercondutores

Além de sustentável, o veículo também é econômico. Suas obras de infraestrutura chegam a ser 70% mais baratas do que as obras do metrô subterrâneo, com muito menos impacto na vida da cidade.

A construção de um metrô no Rio de Janeiro tem o custo de R$ 100 milhões por quilômetro. Já o trem de levitação, calculam os pesquisadores, poderá ser implantado por cerca de R$ 33 milhões por quilômetro.

“Na área de transporte público, podemos dizer que o Maglev é um dos veículos mais limpos do mundo, em termos de emissões. Trata-se de uma solução para o transporte urbano, perfeitamente adaptável a qualquer tipo de topografia”, ressalta Stephan.

O pioneirismo do Maglev-Cobra está na utilização da técnica de levitação com emprego de supercondutores e ímãs de terras raras.

Os supercondutores são refrigerados com nitrogênio líquido a uma temperatura de -196ºC. Um protótipo funcional utilizado hoje no laboratório de testes desliza por um trilho de 12 metros, com 8 passageiros.

Movido a energia elétrica, o Maglev possui baixo consumo de energia, cerca de 25 kJ/pkm (unidade que mede a quantidade de energia gasta para transportar cada passageiro por um quilômetro).

Para se ter ideia da vantagem da tecnologia em termos de eficiência energética, o consumo de um ônibus comum é de 400 kJ/pkm e o de um avião é de 1.200 kJ/pkm.

quarta-feira, 27 de março de 2013

Artigos + Citados de Pesquisadores Brasileiros (papers most cited of brazilian researchers)




Abaixo segue uma lista dos artigos mais citados da literatura de pesquisadores nacionais que desenvolvem trabalhos com a supercondutividade. A pesquisa foi feita analisando o currículo Lattes de vários nomes de referência no Brasil. O currículo Lattes disponibiliza um recurso em que é possível ordenar os artigos publicados por número de citações em três bases distintas: Web of Science, Scopus e Scielo. A sequência de artigos mostrada abaixo e o número de citações de cada um deles foi obtido verificando prioritariamente os dados do Web of Science. Destacado(s) em vermelho está(ão) o(s) nome(s) do(s) pesquisador(es) brasileiro(s) de cada trabalho. Nos artigos em que só há autores nacionais, todos os nomes aparecem em preto.
O número de citações que é mostrado na lista contém dados das bases Web of Science e Scielo, respectivamente. É preciso levar em conta que a pesquisa foi feita no dia 27/03/2013, logo, estes dados precisam ser atualizados constantemente. Portanto, os índices abaixo não são definitivos. Há também uma dependência direta com a atualização feita pelos próprios pesquisadores brasileiros em seus respectivos currículos Lattes. Mesmo assim, os dados servem como referência de um modo geral.



1º) CAMPBELL, L. J.; DORIA, M. M.; KOGAN, V. G. Vortex Lattice Structure in Uniaxial Superconductors. Physical Review B - Solid State, v. 38, p. 2439, 1988.
Citações: 272|117


2º)  EKIN, J. W.; BRAGINSKI, A. I.; PANSON, A. J.; JANOCKO, M. A.; CAPONE, D. W.; ZALUZEC, N.; FLANDERMEYER, B.; de LIMA OF; HONG, M.; KWO, J.; LIOU, S. H. Evidence For Anisotropy Limitation On The Transport Critical Current In Polycristalline YBa2Cu3O7. Journal of Applied Physics, v. 62, p. 4821-4827, 1987.
Citações: 250|39


3º)  VONDEL, J. Van de; DE SOUZA SILVA, C. C.; ZHU, B. Y.; MORELLE, M.; MOSHCHALKOV, V. V. Vortex-Rectification Effects in Films with Periodic Asymmetric Pinning. Physical Review Letters, Estados Unidos, v. 94, n.057003, p. 1-4, 2005.
Citações: 116|9


4º)  KÜMMEL, R.; GUNSENHEIMER, U.; NICOLSKY, R. Andreev Scattering Of Quasiparticle Wave Packets And Current-Voltage Characteristics Of Superconducting Metallic Weak Links. Physical Review B - Condensed Matter and Materials Physics, Estados Unidos, v. 42, p. 3992-4009, 1990.
Citações: 111|58


5º)  de LIMA OF; RIBEIRO, R. A.; AVILA, M. A.; CARDOSO, C. A.; COELHO, A. A. Anisotropic superconducting properties of aligned MgB2 crystallites. Physical Review Letters, v. 86, p. 5974-5977, 2001.
Citações: 110|114


6º)  GRANATO, ENZO; KOSTERLITZ, J. M. Quenched disorder in Josephson-junction arrays in a transverse magnetic field. Physical Review B - Condensed Matter and Materials Physics, v. 33, n.9, p. 6533-6536, 1986.
Citações: 93|50


7º)  PUREUR, P.; COSTA, R. M.; SCHAF, J.; RODRIGUES, P.; KUNZLER, J. V. Critical and Gaussian Conductivity Fluctuations in YBCO. Physical Review. B. Solid State. (Cessou em 1978. Cont. 1098-0121 Physical Review. B, Condensed Matter and Materials Physics), New York, v. 47, p. 11420-11423, 1993.
Citações: 90


8º)  PROZOROV, R.; GIANNETTA, R.; CARRINGTON, A.; ARAUJO-MOREIRA, F. Meissner-London state in superconductors of rectangular cross section in a perpendicular magnetic field. Physical Review. B, Condensed Matter. (Cessou 1997. Cont. 1098-0121 Physical Review. B, Condensed Matter and Materials Physics), v. 62, p. 115-118, 2000.
Citações: 84|85


9º)  DORIA, M. M.; GUBERNATIS, J. E.; RAINER, D. Viriral Theorem for Ginzburg-Landau Theories with Potential Applications to Numerical Studies of Type II Superconductors. Physical Review B - Solid State, v. 39, p. 9573, 1989.
Citações: 84|60


10º)  CARDOSO, C. A.; ARAUJO-MOREIRA, F. M.; AWANA, V. P. S.; E. TAKAYAMA-MUROMACHI; de LIMA OF; H. YAMAUCHI; M. KARPPINEN Spin Glass Behavior in RuSr2Gd1.5Ce0.5Cu2O10. Physical Review. B, Condensed Matter and Materials Physics, v. 67, n.020407, p. 020407, 2003.
Citações: 74


11º)  DORIA, M. M.; GUBERNATIS, J. E.; RAINER, D. Soving the Ginzburg-Landau Equations by Simulated Annealing. Physical Review B - Solid State, v. 41, p. 6335, 1990.
Citações: 73|44


12º)  Aczel, A.; Baggio-Saitovitch, E.; Budko, S.; Canfield, P.; Carlo, J.; Chen, G.; Dai, Pengcheng; Goko, T.; Hu, W.; Luke, G.; Luo, J.; Ni, N.; Sanchez-Candela, D.; Tafti, F.; Wang, N.; Williams, T.; Yu, W.; Uemura, Y. Muon-spin-relaxation studies of magnetic order and superfluid density in antiferromagnetic NdFeAsO, BaFe2As2, and superconducting Ba1-xKxFe2As2. Physical Review. B, Condensed Matter and Materials Physics, v. 78, p. 214503, 2008.
Citações: 63


13º)  Baelus, B.; Cabral, L.; Peeters, F. Vortex shells in mesoscopic superconducting disks. Physical Review. B, Condensed Matter and Materials Physics, Estados Unidos, v. 69, n.064506, p. 064506, 2004.
Citações: 61|61


14º)  Goko, T.; Aczel, A.; Baggio-Saitovitch, E.; Budko, S.; Canfield, P.; Carlo, J.; Chen, G.; Dai, Pengcheng; Hamann, A.; Hu, W.; Kageyama, H.; Luke, G.; Luo, J.; Nachumi, B.; Ni, N.; Reznik, D.; Sanchez-Candela, D.; Savici, A.; Sikes, K.; Wang, N.; Wiebe, C.; Williams, T.; Yamamoto, T.; Yu, W.; Uemura, Y. Superconducting state coexisting with a phase-separated static magnetic order in (Ba,K)Fe2As2, (Sr,Na)Fe2As2, and CaFe2As2. Physical Review. B, Condensed Matter and Materials Physics, v. 80, p. 024508, 2009.
Citações: 58


15º)  JURELO, A. R.; CASTILLO, I. A.; ROJAS, J. R.; FERREIRA, L. M.; GHIVELDER, L.; PUREUR, P.; R JUNIOR, P. Coherence transition in granular high temperature superconductors. Physica C, Amsterdam, v. 311, p. 133-139, 1999.
Citações: 59|58


16º)  EARLY, E. A.; ALMASAN, C. C.; JARDIM, R. F.; MAPLE, M. B. Double resistive superconducting transition in Sm2-xCexCuO4. Physical Review. B, Condensed Matter. (Cessou 1997. Cont. 1098-0121 Physical Review. B, Condensed Matter and Materials Physics), v. 47, p. 433-441, 1993.
Citações: 48|31


17º)  Cabral, L.; Baelus, B.; Peeters, F. From vortex molecules to the Abrikosov lattice in thin mesoscopic superconducting disks. Physical Review. B, Condensed Matter and Materials Physics, Estados Unidos, v. 70, n.144523, p. 144523, 2004.
Citações: 46|47


18º)  DORIA, M. M.; SATIJA, I. I. Quasiperiodicity And Long Ranse Order In A Magnetic System. Physical Review Letters, v. 60, p. 444, 1988.
Citações: 46|14


19º)  BALACHANDRAN, U.; SHI, D.; D. I. dos SANTOS; GRAHAN, S. A.; PATEL, M. T.; TANI, B.; VANDERVOORT, K.; CLAUSS, H.; POEPPEL, R. B. 120 K Superconductivity in the (Bi,Pb)-Sr-Ca-Cu-O System. Physica. C, Superconductivity, EUA, v. 156, n.4, p. 649-651, 1988.
Citações: 46|5

Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!