Aplicações da Supercondutividade - O skate voador da Lexus

quarta-feira, 17 de junho de 2015

Duplicando a eficiência com a supercondutividade


Avanços tecnológicos tornaram o aquecimento por indução alimentada por Corrente Contínua (CC), uma alternativa comercialmente viável em algumas aplicações, quando comparado ao aquecimento por indução por Corrente Alternada (CA) convencional.

O aquecimento por indução convencional CA tem sido utilizado na indústria desde os anos 20. Em 1990, um novo conceito emergiu para o aquecimento por indução por CC com o uso de poderosos eletromagnetos. As tecnologias de cabos magnéticos e o acionamento de motores disponíveis naquela época, entretanto, não permitiram a incorporação econômica do conceito. A partir do surgimento comercial dos cabos supercondutores de alta temperatura (high-temperature superconductors - HTS) e dos avanços em acionamentos a estado sólido, este conceito de quase 20 anos de existência torna-se agora um produto comercialmente viável.


Princípios de Funcionamento

O aquecimento por indução depende de correntes parasitas induzidas para aquecer um objeto condutor. Quando um material condutor é exposto a um campo magnético de tempo variável, correntes elétricas – correntes parasitas – são induzidas no material. Em um aquecedor de tarugo por indução convencional, uma bobina eletromagnética feita de cobre envolve o tarugo metálico (Figura 1). Quando uma corrente alternada é aplicada à bobina de cobre, um campo eletromagnético é gerado e, como conseqüência, correntes parasitas são induzidas no tarugo aquecendo-o devido a sua resistência – fenômeno denominado Efeito Joule.





A bobina eletromagnética é geralmente feita de tubulação de cobre resfriada a água, uma vez que a alta corrente na bobina de excitação de cobre engendra em perdas ôhmicas e, por este motivo precisa ser resfriada para prevenir que se derreta. O aquecimento da bobina de cobre é a principal fonte de perda de energia nesta abordagem. Esta perda de energia é dada pela proporção das resistências da bobina de cobre e do tarugo de metal. Uma vez que a bobina de cobre e um metal não ferroso apresentam resistividade muito similares, a energia é dividida de forma equivalente entre eles. Este efeito é ampliado pelo fato de sermos obrigados a posicionar a bobina de indução o mais próxima possível do tarugo, desta forma o condutor recebe aquecimento adicional do tarugo já aquecido. Por este motivo, a eficiência do aquecedor por indução convencional CA para o aquecimento de alumínio ou cobre atinge apenas os 50% ou menos. Além da pouca eficiência dos aquecedores por indução convencionais CA, o usuário necessita providenciar compensação VAR considerável para o circuito oscilante, a fim de aumentar o fator de potência e reduzir perdas das utilidades. Finalmente, esses circuitos requerem ajustes nas alterações de dimensões do tarugo, ligas e potência de aquecimento.
        Todas essas lacunas não se aplicam aos arranjos do supercondutor conforme descrito na Figura 1. Em um aquecedor por indução supercondutora CC, supercondutores muito eficientes eletricamente são utilizados para a criação de um grande campo magnético CC. A supercondução é um fenômeno que ocorre quando certos materiais são resfriados para temperaturas baixas, resultando em grandes correntes elétricas que fluem praticamente sem resistência. Por este motivo, são necessários menos de 200 W de energia para criar um campo magnético para aquecedores por indução CC. O campo permanece CC e não apresentará variações, entretanto, a peça precisará mover-se para que sejam criadas correntes parasitas. Assim, rota-se o tarugo. A rotação induz correntes parasitas no tarugo, o qual trabalha em movimento oposto ao da rotação. Este é também o princípio do freio magnético por indução. O grande torque de travagem é superado pelo uso de motores grandes e eficientes (exemplo: tamanho de 200 kW -400 kW). A partir da rotação do tarugo, a energia utilizada pelos motores é transferida para o tarugo, o qual é aquecido por correntes parasitas. A fonte de energia, portanto, não está na bobina que produz o campo magnético, porém nos eficientes motores. Toda energia utilizada para fazer rotar o tarugo é transferida para seu aquecimento. As poucas perdas se resumem à eletrônica, ao sistema de acionamento de motores, bem como quanto ao sistema de resfriamento do indutor. Porém o resultado total do maquinário quanto a eficiência energética é superior a 80%. O consumo típico para o aquecimento de alumínio é de 150 kWh por tonelada métrica de tarugos aquecidos nesta configuração, a qual é ainda melhor se comparado com a utilização de fornos a gás altamente eficientes.


Vantagens do Aquecedor por Indução HTS

Além da óbvia vantagem quanto à significativa eficiência em energia se comparada ao aquecimento por indução convencional, há outras vantagens em relação a esta inovadora abordagem, como qualidade do produto, repetibilidade e facilidade na operação, detalhadas a seguir.


Vantagens quanto à Qualidade do Produto

Nos aquecimentos por indução convencionais de 50-60 Hz, as correntes parasitas encontram-se basicamente localizadas na superfície do tarugo, devido ao fenômeno denominado “efeito superficial”, o qual é compreendido como uma intensa função da frequência. A penetração da corrente parasita aumenta na medida em que a frequência diminui ou que o campo magnético aumenta, resultando em um aquecimento mais uniforme. O aquecimento por indução convencional geralmente depende de uma linha de frequência de 50-60 Hz, ao passo que a abordagem do tarugo em rotação aqui descrita utiliza uma velocidade de rotação de aproximadamente 240-600 RPM, a qual corresponde a 4-10 Hz. Os benefícios do aquecimento mais profundo estão ilustrados nos resultados experimentais apresentados na Figura 2.





Na Figura 2, mostramos os resultados de um experimento utilizando termopares e furos em um tarugo de latão. Um dos termopares está localizado na linha central do tarugo, enquanto o outro está localizado bem próximo à superfície. Durante o aquecimento, o tarugo é paralisado quatro vezes até atingir os 675 ºC. A cada parada, realiza-se a leitura e o registro dos dois termopares. Conforme demonstrado, os dois termopares registram a mesma temperatura, até mesmo para o latão, que possui condutividade térmica muito inferior se o compararmos ao alumínio ou ao cobre. Em um sistema convencional de aquecimento por indução, a superfície apresenta-se mais quente que o centro durante o aquecimento (devido ao efeito superficial mencionado anteriormente), tornando-se necessário o encharque do tarugo para que alcance o equilíbrio térmico. No sistema de indução por rotação do tarugo, ilustrado graficamente na Figura 3, o encharque não é necessário, desta forma o aquecimento e a capacidade de processamento acontecem de forma mais rápida.





Vantagens na Repetibilidade

Além do aquecimento mais uniforme, a técnica do tarugo em rotação descrita acima proporcionou resultados com temperaturas possivelmente repetíveis de tarugo a tarugo. Isto se deve ao fato de que a uniformidade das temperaturas radial e axial é estabelecida, de imediato, durante o processo de aquecimento e não após a remoção do tarugo do forno. Desta forma, conforme demonstrado na Figura 4, a variação de temperatura do tarugo é reproduzível a +/- 4 ºC no comprimento do tarugo e de tarugo a tarugo. A figura também ilustra a capacidade do aquecedor em criar duas zonas de temperatura no interior do tarugo – uma zona mais quente na parte frontal e outra mais fria na parte de trás. Ademais, apesar de não demonstrado na figura, a temperatura linear estreita-se cerca de 1 ºC/cm.





Vantagens na Produção e no Funcionamento

A máquina é muito simples mecanicamente, apresentando fáceis procedimentos de instalação e mínimos requisitos quanto à manutenção se comparada aos aquecedores convencionais por indução CA. Além do potencial elétrico, a máquina CC utiliza somente um sistema hidráulico para fornecer pressão de pinçamento dos motores ao tarugo e simples e pequenos resfriadores de água para os trocadores de calor nas unidades de refrigeração. É importante notar que não há necessidade de compensação de potencial reativo para a administração do fator de potência como nas máquinas de indução convencionais. Ademais, tarugos de diferentes comprimentos podem ser aquecidos sem quaisquer ajustes adicionais de bobinas ou fator de potencia, além de não comprometerem em eficiência. A câmara de aquecimento não contém partes complexas em movimento para o transporte do tarugo e os acionadores, tanto quanto as bobinas, são completa e termicamente blindados para protegerem-se do tarugo aquecido. Finalmente, o magneto supercondutor é durável e não há necessidade de reposição ao longo da vida da máquina, pois não é exposto ao calor ou a vibrações. Por este motivo, não é preciso fazer a manutenção da bobina, considerada questão de prioridade para as máquinas convencionais.


Máquina em Destaque

A máquina ilustrada na Figura 5 foi entregue em julho de 2008 para uma empresa comercial de extrusão de alumínio em Minden, Alemanha. As características funcionais mais gerais estão dispostas a seguir:

- Capacidade: 2.2 toneladas/hora (48 tarugos/hora) alumínio
- Tamanho do tarugo: 7 polegadas (178mm) x 27 polegadas (690mm)
- Temperatura máxima: 520 ºC
- Potência de acionamento: 360 kW
- Potência da Bobina: < 200 W
- Consumo de Energia: < 150 kWh/t





O coração do sistema é um magneto supercondutor, o qual está contido em um recipiente termicamente isolado denominado criostato. O criostato mantém a bobina refrigerada. Os magnetos supercondutores e os criostatos de aço são tecnologias muito maturadas utilizadas em inúmeras aplicações industriais, bem como na área médica, como, por exemplo, em máquinas de MRI, sistemas de detenção NMR etc. Acima do magneto localiza-se uma pequena caixa contendo o refrigerador. Trata-se de um item comercialmente disponível, pronto para o uso, que, ao conectar-se com a linha de força, cria um ambiente frio para o magneto. É o mesmo princípio de funcionamento de um refrigerador doméstico. O magneto cria um campo magnético, o qual penetra em duas câmaras de aquecimento termicamente isoladas, no interior das quais encontram-se tarugos em rotação. Os motores de qualquer dos lados do tarugo fornecem a energia de rotação. Esses motores podem escorregar para dentro ou para fora, a fim de acomodar tarugos de diferentes cumprimentos. Eles possuem flanges que seguram o tarugo durante a rotação sem produzir qualquer dano ou deformação. A simplicidade é um dos pontos-chave sobre esta máquina. O único item a ser aquecido é o tarugo. Nenhum componente crítico é exposto a altas cargas de aquecimento, vibrações ou qualquer outra influência potencialmente danosa. Os principais componentes são os motores, tratando-se de tecnologia muito maturada; os refrigeradores, os quais são também bastante desenvolvidos; e o magneto supercondutor, mantido em segurança em um robusto compartimento de aço. Os requisitos para a manutenção são fáceis e mínimos.


Resumo

A tecnologia dos supercondutores tem sido aplicada na produção de uma nova geração de aquecedores por indução de não-ferrosos, com tempos mais curtos de aquecimento e eficiência em dobro quando em comparação aos aquecedores por indução convencionais. Um elemento chave destas máquinas singulares é a rotação da peça. Os Aquecedores por Indução Supercondutores, encontrados em tamanhos de 0.25 MW de razão térmica revolucionam o aquecimento de tarugos de alumínio, cobre e latão anterior à extrusão – reduzindo à metade a demanda por energia, bem como os custos operacionais. As bobinas por indução são fabricadas a partir de material supercondutor avançado, arrefecido com máquina compactada e estruturada com poder de refrigeração a 30 K, com alta corrente CC que implica em um nível de perdas praticamente ínfimo. Com o intuito de criar o efeito de aquecimento por indução, o tarugo é colocado em rotação em um campo eletromagnético de alta potência – A variação da velocidade é determinada pelo tamanho do tarugo e pelo tipo de material. Além de dobrar a eficiência operacional, o Aquecedor por Indução Supercondutor requer pouca manutenção e apresenta vida funcional durável, devido às cargas térmicas não convencionais. Pela mesma razão, a troca de ferramentas é mais rápida e mais segura. Desta forma, o resultado aponta para uma melhora quanto à produção, flexibilidade e custos operacionais.


Para maiores informações: contatar Larry Masur, Ph.D. da Zenergy Power Inc., 379 Oyster Point Boulevard. Suite 1, South San Francisco, CA; Tel: +1781-783-8501; e-mail: Larry.Masur@zenergypower.com, web:





Uma rota para desenvolver nanodispositivos supercondutores (A route to developing superconducting nano-devices)



Ferro (Fe) círculos verdes, selênio (Se) círculos azuis. A temperatura de transição supercondutora é sintonizada através da introdução de elétrons por deposição de átomos de potássio K (círculos laranja) na superfície. Círculos amarelos representam um par de elétrons supercondutores (par de Cooper). (Imagem: Takashi Takahashi)


    
Um grupo de pesquisa da Universidade de Tohoku conseguiu fabricar um filme supercondutor atomicamente fino de alta temperatura crítica (TC = 60 K ou -213 °C). A equipe, liderada pelo professor Takashi Takahashi, também estabeleceu o método para controlar/sintonizar a TC.
Esta descoberta não só fornece uma plataforma ideal para investigar o mecanismo da supercondutividade no sistema bidimensional, mas também abre o caminho para o desenvolvimento de dispositivos supercondutores em nanoescala da próxima geração. Os resultados da pesquisa foram publicados na revista Nature Materials (clique aqui).
Supercondutores são considerados como um dos candidatos mais promissores para os dispositivos eletrônicos avançados da próxima geração. Porém, a aplicação de supercondutores em dispositivos tem sido muito difícil. O maior obstáculo é a necessidade de um sistema de refrigeração grande e dispendioso com hélio líquido, devido à baixa TC dos supercondutores convencionais, que é próxima do zero absoluto (0 K ou -273 °C). Também tem sido um grande desafio realizar a integração de alta densidade de supercondutores em dispositivos eletrônicos. A fim de ultrapassar estes problemas, é definitivamente necessário desenvolver um novo supercondutor com TC superior que possa ser fabricado numa película fina.
A equipe de pesquisa da Universidade de Tohoku voltou sua atenção para o seleneto de ferro (FeSe), que é um membro dos supercondutores à base de ferro. Enquanto a TC do FeSe é de apenas 8 K (-265 °C), a assinatura de uma maior TC tem sido sugerida em filmes ultrafinos e sua verificação foi urgentemente necessária.
Inicialmente, os pesquisadores fabricaram filmes atomicamente finos de FeSe de alta qualidade. Os filmes possuem espessura entre uma monocamada (que corresponde a 3 átomos de espessura) e vinte monocamadas (60 átomos de espessura), e foram fabricados usando a técnica Molecular Beam Epitaxy (MBE – feixe molecular epitaxial). Em seguida, eles investigaram cuidadosamente a estrutura eletrônica dos filmes finos usando o método Angle-Resolved Photoemission Spectroscopy (ARPES - espectroscopia de fotoemissão com resolução angular).




Elétrons são emitidos a partir da superfície pela incidência de luz ultravioleta. A estrutura eletrônica do cristal é determinada através da medição da energia e o ângulo de emissão dos elétrons. (Imagem: Takashi Takahashi)




Nas medidas da ARPES, os investigadores observaram a abertura de um gap supercondutor a baixa temperatura, que é uma prova direta da emergência da supercondutividade nos filmes. Os investigadores encontraram que a TC estimada a partir do gap em um filme de monocamada é surpreendentemente elevada (acima de 60 K), que é cerca de 8 vezes maior do que a TC de amostras volumétricas do FeSe.
Enquanto filmes multicamadas não mostram supercondutividade, os pesquisadores descobriram um novo método para depositar átomos alcalinos sobre os filmes e controlar a densidade de elétrons no filme. Ao empregar este método, os pesquisadores conseguiram converter os filmes multicamadas de não-supercondutores em supercondutores de alta TC ~ 50 K.
O resultado dá um grande impacto para ambas as pesquisas básicas e aplicadas em supercondutores. Pode conduzir à intensas pesquisas visando aumentar ainda mais a TC, alterando o número de camadas atômicas, a quantidade de elétrons dopados e as espécies do substrato. Abre uma via para o desenvolvimento de um nanodispositivo supercondutor que consiste em partes de tamanho atômico. O supercondutor ultrafino de alta-TC pode contribuir eficazmente para o redimensionamento significativo e consequente integração de alta densidade em circuitos elétricos, levando à realização de dispositivos eletrônicos de futura geração com alta economia de energia e operação de ultra-alta velocidade.







sábado, 23 de maio de 2015

Pesquisadores usam Mira para olhar dentro dos supercondutores de alta temperatura (Researchers use Mira to peer inside high-temperature superconductors)





Pesquisadores da Universidade de Illinois estão usando o supercomputador Mira para investigar o estado magnético em diferentes níveis de pressão, do seleneto de ferro, um conhecido supercondutor de alta temperatura. Crédito: Lucas Wagner, Universidade de Illinois



Pesquisadores da Universidade de Illinois estão usando recursos de supercomputação do Argonne Leadership Computing Facility (ALCF), para estudar a natureza misteriosa dos supercondutores de alta temperatura.
Com temperaturas críticas que variam de 30 a 130 Kelvin, esta classe relativamente nova de supercondutores de alta temperatura é nova apenas no nome. Antes da sua descoberta, em 1986, acreditava-se que a supercondutividade só poderia ocorrer em temperaturas abaixo de 30 Kelvin.
     A descoberta de supercondutores de alta temperatura levou a inúmeras pesquisas que resultaram na identificação de vários outros supercondutores, mas a origem de suas propriedades únicas permanece indefinida.
     “Nós ainda não temos uma teoria universal para os supercondutores de altas temperaturas”, disse Lucas Wagner, professor assistente na Universidade de Illinois. “O objetivo do nosso trabalho no ALCF é dar um passo a mais na compreensão desses sistemas”.
     Com uma melhor compreensão dos mecanismos que dão origem à supercondutividade de alta temperatura, os cientistas poderão projetar novos materiais e desenvolver tecnologias a partir deles.
Supercondutores convencionais (de baixa temperatura), são utilizados em ressonância magnética e aceleradores de partículas, mas suas aplicações cotidianas são limitadas porque os materiais requerem sistemas de refrigeração muito caros e difíceis de trabalhar.
     “É possível que os supercondutores de alta temperatura amenizem algumas dessas deficiências e levem a outras aplicações potenciais, como linhas de transmissão de energia e motores elétricos, bem mais viáveis”, diz Wagner.
     No ALCF, Wagner e sua equipe estão usando o supercomputador Mira para simular o magnetismo do seleneto de ferro em diferentes níveis de pressão. O estudo foi inspirado no trabalho experimental que demonstrou que o seleneto de ferro é supercondutor a temperaturas elevadas quando submetidos a altas pressões.
Os pesquisadores realizam simulações da estrutura eletrônica do seleneto de ferro em um nível de detalhe sem precedentes. Até agora, os cálculos tem ajudado a compreender melhor o comportamento magnético do material e porque ele muda com a pressão, fornecendo evidências para apoiar a noção de que a supercondutividade de alta temperatura é de origem magnética.
     “As propriedades dos elétrons são determinadas por um equilíbrio entre uma tendência de se espalhar, evitar um ao outro e estar perto dos núcleos”, diz Wagner. “No seleneto de ferro, nós confirmamos que o equilíbrio entre essas três coisas leva a um caráter magnético incomum. E que este equilíbrio muda com a pressão”.
     As simulações de alta precisão não teriam sido possíveis sem um supercomputador massivamente paralelo como o Mira. Os materiais supercondutores são sistemas fortemente correlacionados, prever o seu comportamento depende do cálculo das interações entre seus elétrons. Métodos computacionais tradicionais, como a teoria do funcional da densidade, em média, desconsideram essas interações, o que tornava impossível estudar esses materiais com qualquer precisão no passado.
     Com a crescente disponibilidade de supercomputadores de alto desempenho, o método QMC (quantum Monte Carlo) surgiu como uma ferramenta eficaz para simular explicitamente as interações entre elétrons, abrindo a porta a novos esforços de investigação computacional para uma ampla gama de sistemas que necessitam de previsões realistas de propriedades dos materiais.
     Como o principal desenvolvedor do código aberto QWalk, Wagner está na vanguarda da pesquisa em QMC. Para ajudar a promover a pesquisa no ALCF, ele continua a trabalhar com os engenheiros de desempenho da instalação para melhorar o código no Mira. Até agora, eles têm sido capazes de aumentar a velocidade do QWalk em 20%.
     “Descobrimos que uma quantidade significativa de tempo foi gasto em uma parte do código com um padrão de computação de memória intensiva”, diz Vitali Morozov, principal engenheiro de desempenho de aplicações no ALCF. “Otimizando o uso de estruturas de dados para operações similares levaram a uma redução significativa do estresse sobre a largura de banda de memória”.
     A equipe de Wagner procura entender a diferença entre supercondutores de alta temperatura e materiais não supercondutores que exibem propriedades semelhantes. Eles também utilizam o Mira para prever novos materiais com propriedades promissoras. Os resultados contribuirão para um esforço de colaboração onde outros pesquisadores vão tentar fazer os materiais previstos.
     “Em última análise, esperamos que o nosso trabalho leve a novos supercondutores”, disse Wagner. “Além disso, os métodos e compreensão que estamos desenvolvendo aqui serão aplicáveis a muitas outras áreas críticas, da catálise à energia fotovoltaica”.





quinta-feira, 21 de maio de 2015

Três ideias supercondutoras para uso em automação industrial (Festo floats three superconducting ideas at Hannover)



Na demonstração SupraCycle da Festo, frascos de vidro são transportados de um processo para outro, sem contato físico


A Festo, uma empresa de automação industrial, apresentou suas mais recentes ideias para a utilização de supercondutores em aplicações industriais. Em três etapas, ela mostra como supercondutores podem ser utilizados: para armazenar e mover objetos em rolos suspensos (de fato, agindo como rolamentos supercondutores); para o transporte de peças de trabalho usando um veio transportador helicoidal rotativo; e para fazer a transferência de objetos a partir de um módulo de automação para outro, sem contato. O vídeo abaixo exibe todas as demonstrações consecutivamente.




        Durante vários anos, a Festo tem investigado e demonstrado potenciais aplicações industriais dos supercondutores. Ela diz que agora está perto de usar algumas das tecnologias em aplicações reais.
        “Não estamos mostrando apenas os efeitos impressionantes da levitação e as oportunidades oferecidas pela tecnologia de supercondutores, estamos discutindo ativamente o seu potencial em conjunto com a automação industrial”, revela Georg Berner, chefe de desenvolvimento corporativo da Festo. “No momento, estamos trabalhando no sentido de iniciar os nossos primeiros projetos-piloto”.
        As demonstrações da Festo não exploram a capacidade dos supercondutores de transportar grandes correntes sem resistência. Em vez disso, eles fazem uso de outro fenômeno - sua capacidade de tornar-se um ímã permanente a uma distância fixa em qualquer plano. Isso permite que os objetos sejam mantidos em posição ou movidos sem contato físico, sem a necessidade de muita energia e sem exigir eletrônica de controle.
        A primeira demonstração (começando em 2:40 no vídeo acima) é chamada SupraCarrier, e pode ser usada para mover planos, produtos não-ferromagnéticos de todos os tamanhos etc. A segunda demonstração (em 4:11 no vídeo), é chamada SupraHelix e mostra como peças em forma de anel poderiam ser transportadas a partir de uma estação de processamento para o outro. A demonstração final, chamada SupraCycle (6:00 no vídeo),        poderia ser usada para transferir objetos sem fazer contato com eles. No vídeo, esses objetos são frascos de vidro. A tecnologia pode ser usada para criar cadeias de processos de qualquer comprimento.




quarta-feira, 20 de maio de 2015

Pesquisadores descobrem “dança-oscilante” em pares de elétrons (Researchers discover 'swing-dancing' pairs of electrons)



Linha inferior: representação de elétrons em um estado supercondutor. Os casais dançam de forma síncrona e sem perda de energia. Linha superior: elétrons dançando de forma totalmente independente no estado normal. Linha do meio: elétrons “dançam oscilando” como pares, mas não formam um estado supercondutor.


Pesquisadores liderados por Jeremy Levy descobriram que elétrons podem “dançar oscilando”. Este comportamento eletrônico pode levar potencialmente a novas famílias de dispositivos quânticos.
        Supercondutores constituem a base para dispositivos de imagem de ressonância magnética, bem como tecnologias emergentes, como computadores quânticos. No coração de todos os supercondutores está o agrupamento de elétrons em pares.
        Levy, Professor de Física e diretor do Pittsburgh Quantum Institute, descobriu uma fase onde os elétrons formam pares, mas não chegam a um estado supercondutor. A descoberta fornece novas pistas fundamentais em um mecanismo que um dia poderia ser usado para projetar um material que é supercondutor à temperatura ambiente. Tal avanço iria transformar radicalmente uma variedade de tecnologias, como trens de alta velocidade, transmissão de energia sem perdas e computadores que operam com requisitos de energia insignificantes.
        Uma maneira de entender esse novo estado é estender uma analogia articulada por J. Robert Schrieffer, que dividiu o Prêmio Nobel de Física em 1972 pela teoria (BCS) da supercondutividade. Em um supercondutor, o movimento de elétrons emparelhados é altamente coordenado, semelhante à valsa de casais na pista de dança. No estado normal ou não supercondutor, os elétrons se movem de forma independente, esbarrando uns nos outros de vez em quando e dissipando energia. O que a nova pesquisa identificou é um estado intermediário onde os elétrons formam pares, mas cada par se move de forma independente. Pode-se considerar que os pares de elétrons estão numa “dança oscilante”, onde os pares dançam de mãos dadas, mas não se movem em sincronia.
        David M. Eagles, em 1969, publicou a primeira teoria para descrever como os elétrons formam pares sem estabelecer um estado supercondutor. Guanglei Cheng, professor assistente no laboratório de Levy, descreve como a teoria foi comprovada: “A descoberta vem do avanço tecnológico para fabricar transistores supercondutores de um único elétron em uma interface de óxido - uma tecnologia que nos permite contar os elétrons e os pares, um por um. E isso é apenas o começo. Agora temos uma plataforma inovadora para estudar as fascinantes correlações elétron-elétron em dimensões nanométricas”.







domingo, 17 de maio de 2015

Primeiro bit quântico supercondutor do Reino Unido (UK's first superconducting quantum bit foundry)




Teresa Hoenigl-Decrinis com um sistema avançado de deposição de filmes finos. Acima da esquerda para a direita: várias demonstrações da natureza quântica de um dos qubits.


O professor Oleg Astafiev e sua equipe projetaram, construíram e operaram o primeiro dispositivo de qubit supercondutor do Reino Unido.
       Bits quânticos ou qubits são os blocos básicos para um computador que trabalha de acordo com as regras da física quântica. Capaz de executar programas e tarefas que nossos computadores atuais não podem fazer, os computadores quânticos são o próximo grande passo no futuro da computação.
Dispositivos supercondutores são uma das mais avançadas tecnologias em estudo a nível mundial para implementar os computadores quânticos. As aplicações potenciais destes materiais vão muito além do campo da computação quântica e incluem avanços na medicina e na exploração do espaço.
       O professor Astafiev e sua equipe obtiveram avanços importantes na qualidade de nanofabricação e desenvolveram um dispositivo de vários qubits acoplados a uma linha de transmissão de microondas. As imagens mostram vários aspectos da natureza quântica do dispositivo e a análise detalhada dos dados comprova a elevada qualidade do processo de concepção e fabricação.
       Segundo Astafiev, “Vamos estudar dispositivos mais complexos e os fenômenos mais interessantes em dispositivos quânticos macroscópicos e fotônica de microondas quântica”.




Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!