Aplicações da Supercondutividade - O skate voador da Lexus

domingo, 21 de dezembro de 2014

Estado eletrônico inusitado encontrado em nova classe de supercondutores não convencionais (unusual electronic state found in new class of unconventional superconductors)




Em cima: ondulações estende abaixo a cadeia de átomos quebram a simetria translacional (como um tabuleiro de xadrez com quadrados pretos e brancos), o que causaria pontos extras no padrão de difração (mostrado como pontos vermelhos no padrão de difração subjacente). Abaixo: alongamento ao longo de uma direção quebra a simetria rotacional, mas não a simetria translacional (como um tabuleiro de xadrez com quadrados idênticos, mas esticada em um dos sentidos), sem causar pontos de difração adicionais. Os experimentos provaram que estes novos supercondutores têm o segundo tipo de distribuição de densidade de elétrons, chamado nemático. Crédito da imagem: Ben Frandsen.


        Uma equipe de cientistas do U.S. Department of Energy's (DOE) Brookhaven National Laboratory, Columbia Engineering, Columbia Physics e da Universidade de Kyoto, descobriu uma forma incomum de ordem eletrônica em uma nova família de supercondutores não convencionais. A descoberta, descrita na revista Nature Communications, estabelece uma conexão inesperada entre esse novo grupo de supercondutores de titânio-oxipnictídeos e os mais familiares cupratos e ferro-pnictídeos, fornecendo aos cientistas uma nova família de materiais a partir dos quais eles podem ganhar uma percepção mais profunda dos mistérios da supercondutividade de alta temperatura.
        “Encontrar este novo material é um pouco como um arqueólogo encontrar um novo túmulo do faraó egípcio”, disse Simon Billinge, físico da Universidade de Columbia que liderou a equipe. “À medida que tentar resolver os mistérios por trás da supercondutividade não convencional, precisamos descobrir sistemas diferentes, mas relacionadas para nos dar um quadro mais completo do que está acontecendo, exatamente como um sepulcro novo com tesouros não encontrado antes, dará um retrato mais completo da sociedade egípcia antiga”. Cada nova descoberta de um tema comum entre estes materiais está ajudando os cientistas a desbloquear as peças do quebra-cabeça.
        Um dos maiores mistérios é entender como os elétrons interagem em supercondutores de alta temperatura, por vezes, tentando evitar um ao outro e em outras vezes emparelhando-se – uma característica fundamental que lhes permite transportar corrente sem resistência. Os cientistas que estudam estes materiais em Brookhaven e em outros lugares descobriram tipos especiais de estados eletrônicos, tais como “ondas de densidade de carga”, onde as cargas se agrupam para formar listras e padrões de xadrez. Ambos quebram a “simetria translacional” do material, a repetição da mesmice quando você se move através da superfície (por exemplo, movendo-se através de um tabuleiro de xadrez você se move de quadrados brancos para quadrados pretos).
        Outro padrão observado pelos cientistas nas duas classes mais famosas de supercondutores de alta temperatura é a quebra de simetria rotacional sem mudança na simetria translacional. Neste caso, chamado ordem nemática, cada espaço em branco é o tabuleiro de damas, mas as formas dos espaços são distorcidas de um quadrado para um retângulo; quando você girar e girar em um espaço, seu espaço vizinho é mais próximo ou mais distante, dependendo da direção em sua face. Tendo observado esse estado inesperado nos cupratos e ferro-pnictídeos, os cientistas estavam ansiosos para ver se esta ordem eletrônica incomum também seria observada em uma nova classe de supercondutores de alta temperatura de titânio-oxipnictídeos descobertos em 2013.
        “Esses compostos de titânio-oxipnictídeos são estruturalmente semelhantes aos outros sistemas supercondutores exóticos, e eles tinham todos os sinais reveladores de uma quebra de simetria, como anomalias de resistividade e medidas termodinâmicas. Mas não havia nenhum sinal de qualquer tipo de onda densidade de carga em qualquer medição anterior. Era um mistério”, disse Emil Bozin, cujo grupo no Brookhaven é especialista na busca de simetrias quebradas em locais escondidos. “Foi natural para nós saltar sobre este problema”.
        A equipe procurou o efeito da quebra de simetria rotacional, uma questão que tinha sido levantada por Tomo Uemura de Columbia, utilizando amostras fornecidas por seus colaboradores no grupo de Hiroshi Kageyama da Universidade de Kyoto. Eles realizaram dois tipos de estudos de difração: de nêutrons e de elétrons. “Nós usamos estas técnicas para observar o padrão formado por feixes de partículas filmados através de amostras de pó dos supercondutores sob uma faixa de temperaturas e outras condições para ver se há uma mudança estrutural que corresponde à formação deste tipo especial de estado nemático”, disse Ben Frandsen, estudante de pós-graduação em física na Universidade de Columbia e principal autor do estudo.
Os experimentos revelaram uma distorção da quebra de simetria a baixa temperatura. Um esforço colaborativo entre os experimentalistas e teóricos estabeleceu a natureza nemática particular da ordem. “Crítico neste estudo foi o fato de que nós pudemos trazer rapidamente vários métodos experimentais complementares, juntamente com conhecimentos teórico, por termos a maior parte dos especialistas no laboratório de Brookhaven e fortes colaborações com colegas de Columbia e além”, disse Billinge.
        A descoberta da ‘nematicidade’ em titânio-oxipnictídeos, juntamente com o fato de que suas propriedades químicas e estruturais se conectam às dos supercondutores de alta temperatura (cupratos e ferro-pnictídeos), tornam esses materiais um novo e importante sistema para ajudar a compreender o papel da quebra de simetria eletrônica na supercondutividade. Como Billinge observou: “Esta nova tumba do faraó, na verdade continha um tesouro: nematicidade”.





sexta-feira, 19 de dezembro de 2014

Nova lei para os supercondutores (New law for superconductors)




Átomos de nióbio e nitrogênio em um filme supercondutor ultrafino que ajudaram pesquisadores do MIT a descobrirem uma lei universal da supercondutividade. Imagem: Yachin Ivry.


Descrição matemática da relação entre espessura, temperatura e resistividade pode estimular avanços


Pesquisadores do MIT descobriram uma nova relação matemática entre a espessura do material, a temperatura e a resistência elétrica que parece válida para todos os supercondutores. Eles descreveram suas descobertas na revista Physical Review B.
       O resultado pode lançar luz sobre a natureza da supercondutividade e também pode levar a melhorias na engenharia de circuitos supercondutores para aplicações em computação quântica e computação de potência ultrabaixa.
       “Fomos capazes de usar esse conhecimento para fazer dispositivos de área maior, que não eram possíveis de construir anteriormente, e o rendimento dos dispositivos aumentou significativamente”, diz Yachin Ivry, um pós-doc do MIT.
Supercondutores são materiais que, em temperaturas próximas do zero absoluto, apresentam nenhuma resistência elétrica. Isto significa que é preciso pouquíssima energia para induzir uma corrente elétrica. Um único fóton irá fazer o truque, é por isso que eles são úteis como fotodetectores quânticos. Um chip de computador construído a partir de circuitos supercondutores consumiria, em princípio, um centésimo da energia de um chip convencional.
       “Filmes finos são cientificamente interessantes, porque eles permitem que você obtenha mais de perto o que nós chamamos de transição supercondutora-isolante”, diz Ivry. “A supercondutividade é um fenômeno que depende do comportamento coletivo dos elétrons. Então, se você vai a dimensões cada vez menores, você obtém o início do comportamento coletivo”.
       Especificamente, Ivry estuda o nitreto de nióbio, um material que tem uma temperatura crítica relativamente elevada. Mas, como a maioria dos supercondutores, ele tem uma temperatura crítica mais baixa quando depositado em filmes finos nos quais se baseiam os nanodispositivos.
       Trabalho teórico anterior tinha caracterizado a temperatura crítica do nitreto de nióbio como uma função da espessura da película ou da sua resistividade medida à temperatura ambiente. Mas nem a teoria parecia explicar os resultados que Ivry estava obtendo. “Vimos grande dispersão e sem tendência clara”, diz ele. “Não fazia sentido, porque nós crescemos os filmes em laboratório, nas mesmas condições”.
       Assim, os pesquisadores realizaram uma série de experimentos em que eles mantinham constantes ou a espessura ou a ‘resistência superficial’, a resistência do material por unidade de área, enquanto variavam outro parâmetro. Eles, então, mediram as alterações na temperatura crítica. Um claro padrão emergiu: espessura vezes temperatura crítica igual a uma constante (A), dividido pela resistência da folha elevada a uma potência específica (B).
       Após derivar a fórmula, Ivry comparou com outros resultados descritos na literatura. Porém, seu entusiasmo inicial evaporou-se com o primeiro artigo consultado. Embora a maioria dos resultados relatados concorde perfeitamente com sua fórmula, dois deles eram dramaticamente errados. Em seguida, um colega que estava familiarizado com o artigo apontou que seus autores tinham reconhecido em uma nota de rodapé que as duas medidas podiam refletir erro experimental: ao construir o seu dispositivo de teste, os pesquisadores tinham esquecido de ligar um dos gases que eles usaram para depositar seu filmes.

Ampliando o escopo

Os outros artigos de nitreto de nióbio consultados por Ivry davam suporte às suas previsões, então ele começou a expandir o estudo para outros supercondutores. Cada novo material investigado, o obrigou a ajustar as constantes (A e B) da fórmula. Mas, a forma geral da equação se mantinha através de resultados relatados por cerca de três dezenas de supercondutores diferentes.
       Não era necessariamente surpreendente que cada supercondutor tivesse sua própria constante associada, mas Ivry e Berggren não estavam felizes que a sua equação exigisse duas delas. Quando Ivry ‘plotou’ graficamente A contra B para todos os materiais investigados, os resultados ficaram em linha reta.
       Encontrar uma relação direta entre as constantes permitiu contar com apenas uma delas sob a forma geral de sua equação. Mas mais interessante, os materiais em cada extremidade da linha tinham propriedades físicas distintas. Aqueles no topo eram altamente desordenados - ou, tecnicamente, ‘amorfos’; aqueles da parte inferior eram mais ordenados, ou ‘granular’. Então, a tentativa inicial de Ivry para banir uma deselegância na sua equação já pode fornecer algumas dicas sobre a física dos supercondutores em pequenas escalas.
       “Nenhuma teoria admitiu até agora uma explicação para a relação da temperatura crítica com a resistência superficial e espessura da folha de uma ampla classe de materiais”, diz Claude Chapelier, pesquisador do France’s Alternative Energies and Atomic Energy Commission. “Existem vários modelos que não preveem as mesmas coisas”.
       Chapelier diz que gostaria de ver uma explicação teórica para essa relação. Mas, enquanto isso, “isso é muito conveniente para aplicações técnicas”, diz ele, “porque há um monte de divulgação de resultados, e ninguém sabe se eles vão conseguir bons filmes para dispositivos supercondutores. Ao colocar um material sob esta lei, você já sabe se é um bom filme supercondutor ou não”.






quinta-feira, 18 de dezembro de 2014

Pesquisadores desenvolvem modelo computacional para prevê a ocorrência da supercondutividade (Rutgers team develops computational model for predicting superconductivity)




http://www.nature.com/nphys/journal/v10/n11/full/nphys3116.html
As 15 caixas nesta imagem mostram a intensidade simulada de excitações de spin em 15 materiais à base de ferro, incluindo os compostos de ferro que são supercondutores (imagens d-h). O eixo x mostra o momento da excitação de spin em locais selecionados do espaço 3D, o eixo y mostra a energia medida em eV. A cor indica a intensidade de excitações de spin com uma dada energia e quantidade de movimento, comparada com os resultados experimentais disponíveis (barras pretas nas imagens de f, g, l, m). Ao visualizar a dinâmica de spin de múltiplos materiais à base de ferro – informação que pode ser lenta e cara de obter experimentalmente – os pesquisadores podem prever melhor quais materiais são susceptíveis de serem supercondutores.


Pesquisadores que estudam supercondutores à base de ferro estão combinando novos algoritmos de estrutura eletrônica com o poder de computação de alto desempenho do supercomputador Titan para prever dinâmica de spin, ou as formas como os elétrons orientam e correlacionam seus spins em um material. Os pesquisadores sugeriram que a dinâmica de spin cria as condições necessárias para a supercondutividade. Esta abordagem poderia acelerar a busca por novos materiais supercondutores.
        Em um artigo da Nature Physics, os autores calcularam os fatores estruturais da dinâmica de spin - uma medida de como os spins se alinham um em relação ao outro a uma determinada distância – em 15 materiais diferentes à base de ferro, incluindo vários supercondutores. “Nossos resultados computacionais estão em boa concordância com os resultados experimentais e temos várias previsões para compostos que ainda não foram medidos”, disse Kotliar. “Uma vez validada a teoria de que os nossos modelos computacionais são baseados em experimentos, então podemos investigar computacionalmente materiais que não estão sendo estudados experimentalmente.”
        A computação oferece uma maneira para os pesquisadores entenderem melhor a dinâmica de spin e outras propriedades dos materiais em muitas condições, tais como a mudança de temperatura, em vez da condição singular do presente durante um determinado experimento. Também permite simular muitos materiais de uma só vez, e o número de potenciais materiais para explorar aumenta rapidamente à medida que os cientistas introduzem modificações para melhorar o desempenho.
Com o poder computacional disponível no sistema Titan de 27 petaflop, a equipe foi capaz de comparar e dinâmica de spin para todos os 15 materiais simulados de modo a identificar propriedades supercondutoras reveladoras.
        “Ao comparar simulações e experiências, aprendemos sobre qual tipo de flutuações de spin realmente promovem a supercondutividade e quais as que não o fazem”, disse Kotliar.
Em seu modelo, a equipe usou uma técnica chamada Dynamical Mean Field Theory (Teoria de Campo Médio Dinâmico, tradução livre) para reduzir o vasto número de interações envolvendo elétrons em uma célula unitária e atribuir a média dessas interações no ambiente de campo médio em todo o resto do sólido. A equipe usou o método Monte Carlo para selecionar estatisticamente as melhores soluções para estas técnicas, atingindo um novo nível de precisão da previsão para a dinâmica de spin nestes tipos de materiais.
        “Estes problemas complexos, como em supercondutores, onde você tem que resolver muitos graus de liberdade ou de um grande número de variáveis, exigem supercomputação em vez de computação em clusters menores”, disse Haule. “Nossos algoritmos são projetados para trabalhar de forma muito eficiente na arquitetura massivamente paralela do Titã.”
Usando 20 milhões de processadores-hora no Titã, a equipe também descobriu através da simulação de um novo estado supercondutor, ou o emparelhamento de elétrons, encontrada no composto de lítio-ferro arsênico, LiFeAs, que é consistente com os resultados experimentais.
        No futuro, eles planejam para simular a dinâmica de spin em outras classes de supercondutores e em matérias não supercondutores que são excepcionalmente difíceis de estudar experimentalmente, como materiais radioativos.
“Usar a computação como um substituto do experimento é um passo importante para a concepção de novos materiais”, disse Kotliar. “A próxima vez que alguém vier até nós com materiais potenciais para uma aplicação e perguntar: ‘Devo trabalhar sobre isso?’ Esperamos simular o material para selecionar os mais promissores.”







Em 2019, o mercado de tecnologia usando supercondutores vai valer cerca de US$ 4,2 bilhões (Superconducting technology markets will be worth about $4.2 billion in 2019)




Mercado global de tecnologias da supercondutividade, 2013-2019
(Milhões de dólares)
http://www.bccresearch.com/market-research/advanced-materials/superconductors-report-avm066d.html



A BCC Research prevê que o mercado global de tecnologias usando materiais supercondutores deverá se aproximar de US$ 4,2 bilhões em 2019, com uma taxa de crescimento anual de 16,4% nos próximos cinco anos. O segmento de eletrônicos usando materiais supercondutores deverá crescer 58,8% ao ano.
Dominam o mercado atual os magnetos supercondutores usados em tecnologias da saúde. O segmento de saúde é atualmente o maior mercado, respondendo por 63% da fatia mundial em 2013, liderada pelos magnetos supercondutores utilizados em scanners de ressonância magnética.
No entanto, é esperado que o segmento de equipamentos elétricos supercondutores (transformadores, geradores, motores, limitadores de corrente, armazenamento de energia, condutores de corrente, cabos etc.) capture mais de 36% do mercado em 2019. Eletrônicos supercondutores também deverão ganhar uma quota significativa do mercado ao longo dos próximos cinco anos.
        A BCC Research prevê que a quota de pesquisa em ciência e tecnologia da saúde seja de 27% em 2019. Uma queda atribuída pelos investimentos em computação (27% do mercado em 2019) e no seguimento de transportes (1%).
O mercado mundial de aplicações da supercondutividade foi de quase US$ 1,8 bilhão em 2013 e espera-se aproximar cerca de US$ 2,0 bilhões em 2014 e cerca de US$ 4,2 bilhões em 2019, com uma taxa de crescimento anual composta (CAGR) de 16,4% ao longo dos próximos cinco anos.
O mercado global de magnetos supercondutores valia mais de US$ 1,7 bilhões em 2013 e deverá chegar a US$ 1,9 bilhão em 2014 e cerca de 2,6 bilhões até 2019, um CAGR de 6,1% para o período de cinco anos, 2.014-2.019.





quarta-feira, 10 de dezembro de 2014

Átomos “chacoalhados” imitam a supercondutividade de alta temperatura (Rattled Atoms Mimic High-temperature Superconductivity)




No material supercondutor de alta temperatura conhecido como YBCO, a luz de um laser faz os átomos de oxigênio (vermelho) vibrarem entre as camadas de óxido de cobre (azul). Os átomos nessas camadas fora da sua posição normal provavelmente favorece a supercondutividade. Neste estado de curta duração, a distância entre os planos de óxido de cobre dentro da camada aumenta, enquanto que a distância entre as camadas diminui. (Jörg Harms/Max Planck Institute for the Structure and Dynamics of Matter)


Um experimento do SLAC National Accelerator Laboratory forneceu o primeiro vislumbre fugaz da estrutura atômica de um material de como ele entrou em um estado semelhante a supercondutividade de temperatura ambiente.

        Os pesquisadores usaram um comprimento de onda específico de luz laser para “chacoalhar” a estrutura atômica do YBa2Cu3O7-d (YBCO). Em seguida, eles sondaram as mudanças resultantes na estrutura com um feixe laser de raio-X do Linac Coherent Light Source (LCLS).

        Eles descobriram que a exposição inicial à luz do laser resulta em mudanças específicas nos átomos de cobre e oxigênio que comprime e expande as distâncias entre eles, criando um alinhamento temporário que exibe sinais da supercondutividade por alguns bilionésimos de segundo bem acima da temperatura ambiente - até 60 °C. Juntando dados teóricos e experimentais os pesquisadores mostraram como essas mudanças nas posições atômicas permitem a transferência de elétrons que impulsiona a supercondutividade.


Novas visualizações de átomos em movimento

“Este é um estado altamente interessante, mesmo que só exista por um curto período de tempo”, disse Roman Mankowsky do Instituto Max Planck, principal autor do estudo. “Quando o laser excita o material, ele desloca os átomos e altera a estrutura. Esperamos que estes resultados ajudem na concepção de novos materiais para melhorar a supercondutividade”.

Manter o estado supercondutor à temperatura ambiente revolucionaria muitos campos, tornando a rede elétrica mais eficiente e permitindo computadores mais potentes e compactos. 


Uma ferramenta poderosa para explorar a supercondutividade

Josh Turner, um cientista do SLAC afirma que ferramentas poderosas como lasers de raios-X têm causado novo interesse na pesquisa de supercondutores, permitindo que pesquisadores isolem uma propriedade específica que eles querem aprender mais a respeito. Isto é importante porque supercondutores de alta temperatura podem apresentar um emaranhado de propriedades magnéticas, eletrônicas e estruturais que podem competir ou cooperar quando o material se move em direção ao estado supercondutor. Por exemplo, um estudo do LCLS publicado recentemente descobriu que excitando o YBCO com a mesma luz laser se interrompe uma ordem eletrônica que compete com a supercondutividade.

        “O que o LCLS está mostrando agora é como essas diferentes propriedades mudam ao longo de um tempo curto”, diz Turner. “Nós podemos realmente ver como os elétrons ou átomos estão se movendo”.

        Mankowsky diz que futuros experimentos no LCLS podem tentar manter o estado supercondutor por períodos mais longos, usando uma combinação de técnicas para estudar como as outras propriedades evoluem no processo de transição para o estado supercondutor e explorar se as mesmas alterações estruturais estão a trabalhar em outros supercondutores de alta temperatura.

        Pesquisadores do National Center for Scientific Research da França, Paul Scherrer Institute na Suíça, do Instituto Max Planck na Alemanha, Swiss Federal Institute of Technology do Colégio da França, da Universidade de Genebra, da Universidade de Oxford no Reino Unido, do Center for Free-Electron Laser Science na Alemanha, e da Universidade de Hamburgo na Alemanha, também participaram do estudo. O trabalho foi apoiado pelo European Research Council, German Science Foundation, Swiss National Superconducting Center e Swiss National Science Foundation.







Caixa de câmbio acopla eixos por levitação magnética


Redação do Site Inovação Tecnológica - 08/12/2014

 

“É a primeira vez na história que o eixo de entrada e o eixo de saída de um câmbio redutor ficam flutuando sem nenhum tipo de contato, e podem manter um mecanismo que não contém nada mais girando a 3.000 rotações por minuto.” [Imagem: UC3M]
 
 
Engenheiros europeus desenvolveram uma caixa de câmbio baseada na levitação magnética, o que significa que o eixo que vem do motor não toca o eixo que leva a tração para as rodas ou qualquer outro mecanismo a ser acionado.

        Em vez da conexão por meio de engrenagens redutoras, como nos câmbios tradicionais, a transmissão é produzida sem contato, graças ao magnetismo.

        Os eixos de entrada e saída literalmente levitam e, ainda assim, transmitem toda a força necessária do motor para o mecanismo a ser movimentado.

        As principais vantagens são a ausência de atrito entre as peças e de desgaste dos vários componentes, dispensando a necessidade de lubrificação.

        “A vida operacional destes equipamentos pode ser muito mais longa do que a vida dos câmbios redutores convencionais com engrenagens dentadas, e pode funcionar até mesmo em temperaturas criogênicas,” disse Efrén Díez, da Universidade Carlos III de Madri, na Espanha.

        Outra vantagem da transmissão sem contato é a virtual ausência de quebras, com o câmbio suportando grandes sobrecargas - mesmo que um eixo fique bloqueado, as duas peças simplesmente giram sobre si mesmas, já que não há engrenagens para quebrar.

        “É a primeira vez na história que o eixo de entrada e o eixo de saída de um câmbio redutor ficam flutuando sem nenhum tipo de contato, e podem manter um mecanismo que não contém nada mais girando a 3.000 rotações por minuto,” disse o professor José Luíz Perez Díaz.

Embora o objetivo do trabalho fosse construir um protótipo que possa ser usado no espaço, a equipe construiu também uma versão terrestre, que funcionou perfeitamente a temperatura ambiente.

        Os "rolamentos" onde se apoiam os dois eixos são esferas supercondutoras que geram forças de repulsão estáveis, mantendo os eixos girando sem vibrações e evitando possíveis desalinhamentos.

        O funcionamento dos supercondutores no espaço tem a vantagem de dispensar o resfriamento, já que as condições de uso envolvem temperaturas de -210 °C no vácuo.

        No espaço, o câmbio magnético deverá acionar braços robóticos e posicionadores de antenas, equipamentos que dependem de alta precisão, além de veículos espaciais para exploração robotizada ou humana.

        A versão "terráquea" teve os ímãs supercondutores substituídos por ímãs permanentes. Segundo a equipe, a caixa redutora por levitação terá grande apelo nas indústrias alimentícia e farmacêutica, onde a ausência de óleos lubrificantes é um apelo importante devido às estritas exigências de limpeza. Mas, segundo eles, o equipamento pode ser usado em qualquer aplicação onde seja necessário um câmbio, ou caixa de redução.


 

Bibliografia:

 

Performance of magnetic-superconductor non-contact harmonic drive for cryogenic space applications. Efren Diez-Jimenez, Ignacio Valiente-Blanco, Victor Castro-Fernandez, Jose Luis Pérez Díaz. Journal of Engineering Tribology, Vol.: 228 Number: 10 Pages: 1071-1079. DOI: 10.1177/1350650114527584

 


 

Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!