Aplicações da Supercondutividade - O skate voador da Lexus

quarta-feira, 2 de julho de 2014

Qubits supercondutores de silício (superconducting-silicon qubits)



Exemplos de dispositivos quânticos supercondutores contendo silício. (esquerda) Um circuito supercondutor pode formar um qubit supercondutor ou um dispositivo supercondutor de interferência quântica (SQUID). Correntes no circuito podem ser usadas para medir a intensidade de um campo magnético. As correntes de fluxo (em qualquer direção), também podem ser utilizadas para constituir um qubit. (centro) Separação dos fios supercondutores por um isolante, neste caso, o silício cristalino puro, forma uma junção Josephson. (direita) Precisamente colocado, regiões altamente dopadas dentro de semicondutores formam os fios supercondutores. Crédito: LPS


        Teóricos propuseram uma maneira de construir dispositivos supercondutores quânticos tais como junções Josephson e qubits, átomo por átomo, dentro de um cristal de silício. Tais sistemas poderiam combinar os aspectos mais promissores de qubits de spin de silício com a flexibilidade de circuitos supercondutores. Os resultados foram publicados na revista Nature Communications (clique aqui).
        Silício de alta qualidade é um dos fundamentos históricos da computação moderna. Mas também é promissor para a tecnologia da informação quântica. Elétrons e spins nucleares em cristais de silício puro foram medidos exibindo excelentes propriedades como qubits de longa duração, o equivalente a bits em computadores convencionais. Em um artigo publicado esta semana na revista Nature Communications, Yun-Pil Shim e Charles Tahan, da Universidade de Maryland e do Laboratório de Ciências Físicas, mostraram como qubits e dispositivos supercondutores podem ser construídos a partir de silício. A ideia é combinar as boas propriedades quânticas do silício com a flexibilidade de dispositivos supercondutores. Eles propõem o uso de técnicas de nano-fabricação “bottom-up” para construir regiões supercondutoras precisamente inseridas dentro de silício ou germânio e mostrar que esses “fios” podem ser usados para fazer junções supercondutoras tipo túnel e outros dispositivos úteis.

Qubits em supercondutores e semicondutores

        Circuitos supercondutores são extremamente personalizáveis e podem produzir dispositivos que vão desde sensores de campo magnético até circuitos lógicos clássicos. Também podem desempenhar um papel importante no processamento de informação quântica, onde eles podem ser usados ​​como uma plataforma para qubits, sistemas quânticos pequenos que residem em uma superposição de estados quânticos.
        Vários tipos de circuitos supercondutores têm sido utilizados para implementar qubits e portas lógicas quânticas com diferentes propriedades e usos potenciais. Por exemplo, em um tipo de circuito, a corrente pode fluir em qualquer dos dois sentidos. Estas alternativas constituem os dois estados superpostos necessários para o estabelecimento de um qubit. Os dois estados podem ser rotulados de “0” e “1”, em analogia com bits clássicos. Pulsos de microondas podem dirigir as transições entre os dois níveis que permitem portas lógicas quânticas.
        Em geral, os sistemas quânticos são objetos delicados e são suscetíveis ao ruído e outros fatores ambientais que diminuem o desempenho. Circuitos quânticos devem proteger qubits de interferência externa durante o tempo que o cálculo prosseguir. Apesar do rápido progresso na qualidade dos qubits supercondutores (vida superior a 100 microssegundos), as taxas de erro ainda são limitadas pela perda nos metais, isolantes, substratos e interfaces que compõem os dispositivos supercondutores heterogêneos.
Qubits de spin são exemplos de qubits feitos no estado sólido. O spin é uma propriedade quântica de partículas como o elétron; físicos muitas vezes pensam a rotação de um elétron como sendo um pequeno ímã, que irá, naturalmente, apontar na direção de um campo magnético aplicado. Aqui, os estados e os 1 0 correspondem às duas possíveis orientações do spin do elétron, para cima ou para baixo. Uma vez que a rotação é naturalmente dissociada da carga em alguns sistemas (ou seja, as informações armazenadas na direção do spin não serão perdidas, movendo o elétron ou ser abalada por ruído elétrico), qubits de spin são candidatos promissores para um projeto robusto de qubit. Além disso, o uso de dispositivos semicondutores epitaxiais e a capacidade de mergulhar qubits de spin no fundo de um meio de semicondutores, longe de ruído em interfaces e superfícies, resultou em qubits que vivem por alguns segundos ou até mesmo horas, em algumas situações, muito mais do que qubits supercondutores.

Dispositivos práticos

Shim e Tahan propuseram a utilização das melhores características de qubits supercondutores e semicondutores. Eles pretendem fazer fios supercondutores e cruzamentos, a partir do qual qubits e sensores podem ser feitos, colocando (ou dopando) átomos receptores (como o boro ou alumínio, elementos que aceitam elétrons) em regiões específicas dentro do cristal de silício. Eles sugerem que uma técnica desenvolvida recentemente (litografia de hidrogênio STM), pode ser usada para fazer exatamente isso. Lançado pela Michelle Simmons, da Universidade de New South Wales, uma ponta do microscópio de varredura por tunelamento (STM) é usada para remover seletivamente os átomos de hidrogênio na superfície do silício (ou germânio). A dopagem de gás, tais como a fosfina, pode então ser introduzida, permitindo a inserção seletiva de impurezas com precisão atômica. “Se os átomos aceitadores podem ser colocados em densidade suficiente sobre camadas, então regiões supercondutoras podem ser fabricadas dentro do silício e, em seguida, encapsulada com silício cristalino,” diz o Dr. Shim. Um em cada quatro átomos de silício foram substituídos dessa maneira. Geralmente, quanto maior a densidade de dopante, maior será a temperatura crítica supercondutora. Os cientistas aprenderam cerca de 10 anos atrás que o silício pode ser supercondutor quando dopado com densidade suficiente de átomos aceitadores, como o boro. Nos últimos anos, a qualidade desses sistemas de silício supercondutores tem melhorado muito, produzindo material supercondutor com temperaturas críticas próximas de 1 K e ainda deixando o cristal em boas condições (em outras palavras, ainda é de silício). Ao calcular as propriedades dessas regiões supercondutoras-semicondutoras, Shim e Tahan mostram que os fios com temperatura crítica suficiente podem ser construídos com a abordagem ‘bottom-up’ de litografia de hidrogênio.
Finalmente, eles mostram que os tipos de qubits supercondutores observados em amostras de metal podem ser construídos no sistema de silício, bem como fornecer as exigências geométricas necessárias para sua fabricação. “Há um esforço em curso para melhorar a qualidade da barreira epitaxial de tunelamento”, disse Charles Tahan, “mas nenhum trabalho anterior para fazer todo o dispositivo a partir de um único cristal semicondutor. Até onde sabemos, esta é a primeira proposta sobre a viabilidade do silício para junções Josephson e qubits. Também estou animado sobre o potencial desses sistemas para outros dispositivos, como sensores e detectores de partículas.”
Além da possibilidade de circuitos supercondutores construídos dentro de um cristal homogêneo de silício, dispositivos supercondutores-semicondutores como estes poderiam ser utilizados para construir outros tipos de sistemas quânticos exóticos de muitos corpos em escala atômica, e até mesmo atuar como banco de testes para a nossa compreensão da supercondutividade.


terça-feira, 1 de julho de 2014

Físicos explicam fenômeno contraditório em supercondutividade (dissipative superconducting state of non-equilibrium nanowires)

 


Pesquisador da Universidade Santa Barbara na Califórnia desenvolveu uma nova maneira para fabricar nanocircuito supercondutor. Contudo, os extremamente pequenos nanofios de zinco projetados apresentaram propriedades inesperadas.



Este diagrama de fases de campo magnético atual mostra a alta sensibilidade do planalto tensão ao campo magnético. Quando o planalto desaparece, o estado supercondutor se expande.




        Chen, juntamente com o seu orientador de tese, Allen M. Goldman, e o físico teórico Alex Kamenev, ambos da Universidade de Minnesota, passou anos procurando uma explicação para estes efeitos extremamente intrigantes. Seus resultados foram publicados na Nature Physics. Clique aqui!

        “Estávamos determinados a descobrir como poderíamos conciliar os estranhos fenômenos com as regras que regem a supercondutividade”, disse o principal autor Chen. “A coexistência de supercondutividade com dissipação, o que observamos, é contra-intuitivo e dribla as regras como as conhecemos.”

     Supercondutividade e dissipação são processos mutuamente excludentes, pois dissipação é uma característica do estado normal. “Mas nós descobrimos que a supercondutividade e dissipação podem coexistir em condições bastante genéricas, no que parece ser uma forma universal”, disse Chen.

Depois de longo e cuidadoso trabalho, envolvendo esforços teóricos e experimentais, os pesquisadores descobriram uma explicação que se encaixa. Por trás de todos os fenômenos observados, há um estado de não equilíbrio peculiar de excitações de quase-partículas tipo-elétron que se formam nos nanofios projetados por Chen.

        As quase-partículas são criadas por deslizamentos de fase. Num estado supercondutor, quando supercorrente flui através do nanofio, a função mecânica quântica descrevendo a supercondutividade do fio se desenvolve ao longo do comprimento do fio, com a forma de um espiral. De tempos em tempos, uma das revoluções contrai e desaparece completamente. Este evento é chamado de deslizamento de fase. Esta peculiaridade gera quase-partículas, dando origem a um estado desconhecido onde dissipação e supercondutividade coexistem.

        “A realização mais significativa foi fazer os nanofios menores e mais frios do que ninguém tinha feito antes”, disse Kamenev. “Isto permitiu que as quase-partículas viajassem mais rápido através do fio e evitassem o relaxamento. Isto conduz a um peculiar estado não térmico, que combina as propriedades de um supercondutor e um metal normal, ao mesmo tempo.”

        Além de descobrir este fenômeno único, a equipe também encontrou outra propriedade até então não vista no platô de tensão. Quando um campo magnético é ligado no estado platô de tensão, em vez de diminuir a região do supercondutor, que é o que normalmente ocorreria, a área supercondutora expande e é reforçada.

        “Esta é uma propriedade inesperada de nanofios muito pequenos”, disse Goldman. Esse estado parece ser universal para circuitos supercondutores ultra-pequenos como os de Chen, que possui contatos ideais entre os nanoelementos e os condutores. Tais supercondutores em nanoescala podem ser componentes fundamentais em futuros sistemas de um computador supercondutor.

“Nossos resultados demonstram que nanocircuitos supercondutores podem ser usados como uma simples, mas bastante genérica, plataforma, para investigar fenômenos quânticos fora do equilíbrio,” concluiu Chen.

“Agora temos de explorar os parâmetros dos nanofios que geram o efeito e aqueles que não o fazem”, disse Goldman. “Nós também precisamos examinar o comportamento dos fios de diferentes comprimentos e diferentes materiais, a fim de definir os parâmetros.” 

Fonte: http://www.news.ucsb.edu/2014/014300/bending-rules

Recorde mundial de aprisionamento de campo magnético (new record for a trapped field in a superconductor)





Um recorde mundial que resistiu por mais de uma década foi quebrado por uma equipe liderada por engenheiros da Universidade de Cambridge, aproveitando o equivalente a três toneladas de força em uma amostra de material equivalente ao tamanho de uma bola de golfe.
    Os pesquisadores de Cambridge conseguiram aprisionar um campo magnético de magnitude 17,6 Tesla - cerca de 100 vezes mais forte do que o campo gerado por um ímã de geladeira - em um supercondutor de alta temperatura à base de óxido de cobre, bário e gadolínio (GdBaCuO), batendo o recorde anterior por 0,4 Tesla. Os resultados foram publicados na revista Superconductor Science and Technology (clique aqui).
       A pesquisa demonstra o potencial dos supercondutores de alta temperatura para aplicações em uma variedade de campos, como separadores magnéticos que podem ser usados ​​em refinamento mineral e controle de poluição, e em trens de alta velocidade magneticamente levitados.
         A corrente transportada por um supercondutor também gera um campo magnético, e quanto maior a intensidade do campo que possa ser contido dentro do supercondutor, maior a corrente que pode transportar. Os supercondutores práticos podem transportar correntes que são tipicamente 100 vezes maiores do que o cobre, o que lhes confere vantagens consideráveis ​​de desempenho.
O novo recorde foi alcançado utilizando amostras de 25 milímetros de diâmetro do supercondutor GdBaCuO, fabricado sob a forma de um monobloco grande usando um método de processamento por fusão. O recorde anterior de 17,24 Tesla, definida em 2003 por uma equipe liderada pelo professor Masato Murakami, do Instituto de Tecnologia de Shibaura no Japão, usou um tipo altamente especializado de supercondutor que é semelhante, mas sutilmente diferente em composição e estrutura.
Para conter um campo tão grande, a equipe usou materiais conhecidos como cupratos: folhas finas de cobre e oxigênio separados por tipos mais complexos de átomos. Os cupratos foram os primeiros supercondutores de alta temperatura a serem descobertos e tem o potencial de serem amplamente utilizados em aplicações científicas e médicas. A fim de aprisionar o campo magnético, os pesquisadores modificaram a microestrutura do GdBaCuO para aumentar a densidade de corrente e o desempenho térmico, reforçando-o com um anel de aço inoxidável, que foi usado para 'embalar a vácuo' as amostras individuais de grãos. “Este foi um passo importante para alcançar este resultado”, disse o Dr. John Durrell que liderou o experimento na Flórida.
         As linhas de fluxo magnético em um supercondutor se repelem fortemente, sendo difícil conter um campo tão grande. Mas, pela engenharia da microestrutura volumétrica, o campo é aprisionado na amostra pelos famosos ‘centros de ancoragem de fluxo’ distribuídos por todo o material. “O desenvolvimento de centros de aprisionamento eficazes em GdBaCuO foi a chave para este sucesso”, disse Yun-Hua Shi, responsável pelo desenvolvimento da técnica de fabricação por processo de fusão, em Cambridge, nos últimos 20 anos.
         O resultado foi o maior campo já preso em um volume de material independente, em qualquer temperatura. “Este trabalho poderá anunciar a chegada de supercondutores em aplicações no mundo real”, disse o Professor Cardwell. “Para ver supercondutores aplicados no uso diário, precisamos de grandes grãos de material supercondutor com as propriedades necessárias que podem ser fabricados por processos relativamente padrões.”
         Um nicho de aplicações está sendo desenvolvido pela equipe de Cambridge e seus colaboradores, e prevê-se que as aplicações comerciais empregando supercondutores poderão ser vistas dentro dos próximos cinco anos.

quinta-feira, 19 de junho de 2014

Geladeira supercondutora esfria metais a mK (superconducting cascade electron refrigerator)




http://scitation.aip.org/content/aip/journal/apl/104/19/10.1063/1.4876478

O refrigerador de elétrons supercondutor, com uma configuração S2|S1|N|S1|S2, pode esfriar um metal de 0,5 K a 100 mK em um processo de duas fases em cascata. Crédito: M. Camarasa-Gómez et al. © 2014 AIP Publishing LLC

Resfriar objetos microscópicos a temperaturas próximas do zero absoluto requer tecnologias de refrigeração não convencionais. Um método de resfriamento em microescala é a refrigeração supercondutora, na qual as quase-partículas (excitações coletivas) quentes de metais não-supercondutores são transportadas para os supercondutores. Essa técnica pode esfriar objetos microscópicos bem abaixo de 1 K. Em um novo estudo publicado na Applied Physics Letters, uma equipe de pesquisadores, M. Camarasa-Gómez et al., da Itália e da França, propôs um novo design para um refrigerador supercondutor em que o resfriamento é realizado em uma cascata de passos. Devido a esta operação de múltiplos estágios, o refrigerador pode esfriar um metal normal de 0,5 K a 100 mK com melhor desempenho em comparação com técnicas similares.
‘Geladeiras’ supercondutoras são compostas de supercondutores (S), metais normais (N) e barreiras de tunelamento (|) que muitas vezes são dispostos em uma configuração simétrica; por exemplo, S|N|S. Quando uma tensão é aplicada aos supercondutores, quase-partículas quentes no metal normal tunelam através das barreiras | para os supercondutores, arrefecendo o metal. O projeto proposto consiste na configuração S|N|S com um contato túnel supercondutor adicional em cada extremidade: S2|S1|N|S1|S2. Uma voltagem é aplicada aos supercondutores S2, levando a primeira quase-partícula quente do metal normal para os supercondutores S1, e, em seguida, para os supercondutores S2. Cada evento de encapsulamento remove o calor, resultando em uma corrente de calor que flui a partir do interior para o exterior.

“Uma geometria cascata permite arrefecer uma primeira fase supercondutora, que é utilizado como um banho térmico local em uma segunda etapa,” explicam os pesquisadores.

Este método de arrefecimento em cascata exige que os componentes tenham certas propriedades, em particular as resistências, a fim de operar corretamente. Os investigadores esperam que estes requisitos sejam facilmente implementados em um dispositivo prático utilizando uma combinação de vanádio, alumínio e cobre. A cascata de elétrons supercondutores poderia ser usada para o resfriamento de ambos os objetos macroscópicos e microscópicos, incluindo sensores ultrafrios para instrumentos astronômicos. 



Pontos quânticos críticos na transição de fase normal-supercondutor (two-stage magnetic-field-tuned superconductor–insulator transition)





http://www.nature.com/nphys/journal/v10/n6/full/nphys2961.html




      Pesquisadores do Instituto de Tecnologia de Tóquio desvendaram as complexidades das flutuações de fase quântica durante a transição supercondutor-isolante em supercondutores de alta temperatura. A transição supercondutor-isolante (SI) nos cupratos é normalmente feita pela aplicação de um campo magnético. No entanto, devido às complexidades da supercondutividade, muitas questões ainda devem ser respondidas sobre o processo exato que está subjacente à transição e as fases quânticas associadas que o material sofre. Os cientistas pensavam que os supercondutores de alta temperatura tinha um único ponto quântico crítico na transição supercondutor-isolante. Agora, uma equipe internacional de pesquisadores dos EUA e do Japão, descobriram uma transição de dois estágios no sistema LSCO (lantânio-estrôncio-cobre-oxigênio).

“A delicada interação de flutuações térmicas, flutuações quânticas e desordem, leva a um complexo diagrama de fase de matéria de vórtice H-T [campo magnético-temperatura]”, afirmam os autores em seu artigo publicado na revista Nature Physics

Os pesquisadores mediram a resistividade elétrica do material em campos magnéticos de até 18 T em diferentes temperaturas abaixo de 0,09 K, revelando a imagem completa do SI. Eles utilizaram uma variedade de LSCOs que tinham sido criados usando técnicas diferentes, de modo a separar os efeitos de preparação da amostra. A equipe de Sasagawa descobriu que os LSCOs mostram uma transição de fase em duas etapas induzida pelo campo magnético, a T = 0 K, antes de se tornarem isolantes. Primeiro, o material forma um estado supercondutor contendo a rede de vórtice conhecida como ‘‘vidro de Bragg’’. Nesta fase, o material apresenta resistividade zero a temperatura finita. Depois de um primeiro ponto crítico atingido, ele passa para uma fase supercondutora desordenada, ou ‘‘vidro de vórtice’’, em que o arranjo dos vórtices torna-se amorfo. Nesta fase, a resistividade zero só é obtida no zero absoluto. Depois de um segundo ponto crítico alcançado, a supercondutividade é perdida e os LSCOs tornam-se isolantes.

Os investigadores concluem: 

“Nossos resultados fornecem informações importantes sobre a interação da física de vórtices e a criticalidade quântica em supercondutores de alta temperatura, fazendo a ponte entre o seu comportamento na região ‘clássica’ de alta T e a menos explorada região 'quântica' de baixa T.”

O trabalho realizado pelos pesquisadores da Florida State University (liderada pelo professor Popovic) e Tokyo Institute of Technology (liderada pelo professor Sasagawa) prova pela primeira vez que supercondutores de alta temperatura (LSCO) passam por dois pontos quânticos críticos antes de se tornarem isolantes, devido ao sutil efeito das flutuações de temperatura e perturbações do campo magnético sobre o estado de vórtice. Sua pesquisa pode melhorar a compreensão da supercondutividade de alta temperatura sob campos magnéticos e fornecer uma informação importante sobre a aplicação de supercondutores de alta temperatura. 





segunda-feira, 16 de junho de 2014

Pesquisadores afirmam ter resolvido enigma dos high-Tc (superconducting secrets solved after 30 years)




Mapa da estrutura do óxido de cobre supercondutor. Image: Nicolle R Fuller

        Pesquisadores da Universidade de Cambridge descobriram que ondas de elétrons, conhecidas como ondas de densidade de carga (charge density waves), criam “bolsões” retorcidos de elétrons, a partir do qual emerge a supercondutividade. Os resultados foram publicados em 15 de junho na revista Nature. Clique aqui!
Um dos problemas com supercondutores de alta temperatura é que não sabemos como encontrar novos, não sabemos quais os ingredientes responsáveis ​​pela criação da supercondutividade de alta temperatura, disse Dr. Sebastian Suchitra do Laboratório Cavendish, autor principal do artigo. Nós sabemos que há algum tipo de cola que faz com que os elétrons se emparelhem, mas não sabemos o que é essa cola.
        Para decodificar o que faz supercondutores de alta temperatura, os pesquisadores trabalharam ao contrário: determinando quais as propriedades que os materiais têm no estado normal, eles podem descobrir o que estava causando a supercondutividade.
Estamos tentando entender quais os tipos de interações acontecem no material antes de os elétrons emparelharem, uma dessas interações deve ser responsável pela criação da cola, disse Sebastian. Uma vez que os elétrons já estão emparelhados, é difícil saber o que os fez emparelhar-se. Mas se nós podemos quebrar os pares, então podemos ver o que os elétrons estão fazendo e esperamos entender de onde a supercondutividade veio. Determinando o estado normal de um supercondutor, faria o processo de identificação de novos muito menos aleatório, saberíamos que tipos de materiais a serem procurados, disse Sebastian.
        Trabalhando com campos magnéticos extremamente fortes, os pesquisadores foram capazes de cancelar o efeito supercondutor em cupratos. As tentativas anteriores para determinar as origens de supercondutividade, determinando o estado normal, usaram a temperatura em vez do campo magnético, mas levou a resultados inconclusivos.
        Estas experiências foram capazes de resolver o mistério em torno da origem de bolsas de elétrons no estado normal para criar a supercondutividade. Anteriormente, era amplamente difundida a ideia de que os bolsões de elétrons estavam localizados na região de forte supercondutividade. Em vez disso, os atuais experimentos usando fortes campos magnéticos revelou uma peculiar geometria, onde cada camada vai em uma direção diferente.
    Estes resultados apontaram os locais de bolsões onde a supercondutividade é mais fraca, e sua origem em ondas de elétrons conhecidas como ondas de densidade de carga. É esse estado normal que é substituído para produzir a supercondutividade na família de supercondutores dos cupratos.
Ao identificar outros materiais que têm propriedades semelhantes, esperamos que nos ajude a encontrar novos supercondutores a temperaturas cada vez mais altas, até mesmo, à temperatura ambiente, o que poderia abrir uma enorme gama de aplicações, disse Sebastian.

Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!