Aplicações da Supercondutividade - O skate voador da Lexus

terça-feira, 3 de setembro de 2013

A sorte está lançada: Reator de fusão nuclear é selado





Redação do Site Inovação Tecnológica - 30/08/2013


Vista geral da construção do reator de fusão tipo estelarator, antes de seu fechamento final. [Imagem: IPP]

Esteralator
Enquanto o reator de fusão nuclear do ITER recebe o sinal verde para o início de sua montagem, o Wendelstein 7-X, na Alemanha, dá um passo ainda mais significativo.
Acabam de ser colocadas as últimas coberturas do complicado reator de fusão, selando definitivamente o invólucro onde os cientistas tentarão recriar o processo de geração de energia das estrelas.
Ao contrário do reator do ITER, que é do tipo tokamak, o reator do Wendelstein 7-X é do estelarator (stellarator).
Um tokamak é alimentado por uma corrente de plasma. Essa corrente fornece uma parte do campo magnético responsável por isolar o próprio plasma das paredes do reator - o grande desafio é evitar as instabilidades do plasma circulante pelo torus.
Um reator do tipo estelarator não tem corrente, eliminando de pronto o problema das instabilidades do plasma.
Mas o projeto tem seus próprios desafios, o que justificou a construção do Wendelstein 7-X, que, da mesma forma que o ITER, será um reator de pesquisas, para demonstrar a viabilidade do conceito.
Se tudo correr bem, ele entrará em funcionamento em 2014.

O anel retorcido do Wendelstein 7-X é formado por cinco módulos estruturalmente idênticos. [Imagem: IPP]

Janelas fechadas
O anel retorcido do Wendelstein7-X é formado por cinco módulos estruturalmente idênticos.
Cada uma das cinco seções do canal de plasma, assim como as 14 bobinas magnéticas supercondutoras, foram conectadas e revestidas por um invólucro externo de aço pesando 120 toneladas.
Cada um dos cinco módulos tem diversas "janelas", onde são conectados instrumentos de medição, bombas e mecanismos de resfriamento.
Com a soldagem da janela número 254, agora o reator de fusão, assim como a sorte do que ocorrerá lá dentro, estão totalmente selados.

Fonte: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=reator-fusao-nuclear-selado&id=010115130830&ebol=sim

terça-feira, 20 de agosto de 2013

Teletransporte fica prático para computação quântica (quantum teleportation)




Enquanto nos filmes de ficção científica as pessoas saem do ponto A e são recriadas no ponto B, no teletransporte quântico os qubits não desaparecem e reaparecem - a única coisa que vai de um ponto a outro é a informação guardada no qubit. [Imagem: University of Tokyo]

Energizar

Não, ainda não é nada parecido com o teletransporte de Jornada nas Estrelas, mesmo porque cálculos indicam que o tempo para teletransportar um ser humano seria longo demais com qualquer tecnologia imaginável hoje.
Mas duas equipes fizeram avanços substanciais na área do teletransporte quântico, usando técnicas e abordagens diferentes, colocando a técnica muito próxima da utilização prática no interior de computadores quânticos e para a transmissão e a criptografia de dados.
No primeiro experimento, o teletransporte passou a ser determinístico, alcançando um aproveitamento de quase 100%, passando a ser realizado, por assim dizer, ao apertar de um botão.
No segundo experimento, o teletransporte, também determinístico, passou a ser feito por um circuito de estado sólido, dispensando os complicados aparatos fotônicos.
Embora ainda não seja o suficiente para se sonhar em transportar objetos à distância, os dois avanços são importantes para a comunicação, a criptografia e computação quânticas.

Teletransporte de informações

Enquanto nos filmes de ficção científica as pessoas saem do ponto A e são recriadas no ponto B, no teletransporte quântico os qubits não desaparecem e reaparecem - a única coisa que vai de um ponto a outro é a informação guardada no qubit.
Para isso, o teletransporte quântico depende do entrelaçamento quântico (ou emaranhamento), um fenômeno pelo qual duas partículas separadas têm efeito imediato uma sobre a outra - é o chamado efeito fantasmagórico à distância.
Como tudo o que acontece com a partícula A afeta imediatamente a partícula B, torna-se possível transferir a informação sem transferir fisicamente a partícula - as partículas continuam em seus lugares, mas a informação passa de uma para a outra.

Embora seja feito ao apertar de um botão - basta ligar o laser - o teletransporte da equipe do Japão e da Alemanha usa o tradicional sistema óptico. [Imagem: University of Tokyo]

Teletransporte ao apertar de um botão

Shuntaro Takeda e seus colegas da Universidade de Tóquio, no Japão, juntaram duas técnicas já usadas anteriormente, combinando qubits fotônicos com o teletransporte de ondas ópticas - a informação é guardada em um bit quântico, mas viaja através de uma conexão clássica por fibra óptica.
Isto elimina a necessidade da medição pós-teletransporte para ver se a coisa funcionou. Com isto, a taxa de eficiência aumentou mais de 100 vezes em relação aos experimentos anteriores, deixando de ser probabilística para ser determinística.
Os qubits foram enviados do Japão até a Universidade Johannes Gutenberg, na Alemanha, viajando mais de 10.000 km, e chegando com uma precisão entre 79 e 82%. Para isso, em vez de entrelaçar apenas dois qubits, eles entrelaçaram vários deles, permitindo que mais informação fosse enviada de uma vez só.
Segundo os pesquisadores, em teoria é possível melhorar a técnica até uma eficiência de 100%, quando então o teletransporte de qubits será viável para uso direto em computadores quânticos.
Para isso, a equipe planeja agora cascatear dois ou três sistemas similares ao que eles acabam de criar.

Não, a formiga não foi teletransportada - ela só serve para mostrar as dimensões do circuito supercondutor que realizou o primeiro teletransporte inteiramente de estado sólido. [Imagem: Jonas Mlynek/ETH Zurich]

Teletransporte de estado sólido

No segundo experimento, Lars Steffen e seus colegas do Instituto Federal de Tecnologia da Suíça teletransportaram seus qubits por uma distância muito menor: 6 milímetros.
Mas há duas grandes vantagens na técnica utilizada.
A primeira é que o teletransporte quântico foi feito usando um minúsculo circuito eletrônico de estado sólido, e não os enormes e delicados aparatos fotônicos - em vez da conexão óptica utilizada nos outros experimentos, a técnica usa circuitos supercondutores postos frente a frente.
A segunda vantagem é que o teletransporte é muito mais rápido, podendo transmitir até 10.000 qubits por segundo.
Isto coloca a abordagem dos pesquisadores suíços muito próxima da utilização prática em computadores quânticos, ainda que seja apenas para transmitir informações da memória para o processador, ou entre processadores.

Bibliografia:

Deterministic quantum teleportation with feed-forward in a solid state system, L. Steffen, Y. Salathe, M. Oppliger, P. Kurpiers, M. Baur, C. Lang, C. Eichler, G. Puebla-Hellmann, A. Fedorov, A. Wallraff. Nature, Vol.: 500, 319-322. DOI: 10.1038/nature12422

Deterministic quantum teleportation of photonic quantum bits by a hybrid technique, Shuntaro Takeda, Takahiro Mizuta, Maria Fuwa, Peter van Loock, Akira Furusawa. Nature, Vol.: 500, 315-318. DOI: 10.1038/nature12366

Fonte: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=teletransporte-pratico-computacao-quantica&id=010110130816&ebol=sim

terça-feira, 13 de agosto de 2013

Livros gratuitos (free books)




        Segue abaixo alguns links que disponibilizam livros para serem baixados gratuitamente. Os livros estão em inglês e este blog não possui direitos autorais de nenhum deles. Nos limitamos apenas a divulgar os links! Para acessá-los, basta clicar nas imagens ou nos títulos.


 






 

 

 

Superconductors - Materials, Properties and Applications


http://www.intechopen.com/books/superconductors-materials-properties-and-applications

 

 

Superconductors - Properties, Technology, and Applications

 
http://www.intechopen.com/books/superconductors-properties-technology-and-applications

 

sexta-feira, 2 de agosto de 2013

Aplicações dos supercondutores (applications of superconductors)



       
       Segue abaixo uma pequena lista contendo algumas das mais importantes aplicações práticas dos sistemas supercondutores. O objetivo desse post é fornecer apenas uma ideia geral sobre onde são empregados estes materiais. Para uma visão mais profunda, vejas os links nas laterais desse blog e encontre livros para download gratuito como, por exemplo, Applications of High-Tc Superconductivity. Obs.: clicando nos links e nas imagens, a página será direcionada para a fonte das informações. Veja cada link e enriqueça ainda mais seus conhecimentos.





        
             Componentes SQUID                              SQUID

O SQUID é o equipamento mais sensível para a detecção de campos magnéticos, capaz de medir intensidades da ordem de 10–15 T. O campo da terra é em torno de 10–6 T e o do cérebro humano é por volta de 10–13 T. Em geral, o SQUID é usado para realizar medidas magnéticas de várias espécies de materiais, sendo por isso frequentemente denominado de magnetômetro SQUID. Sua capacidade de detecção é proporcionada pelas famosas junções Josephson.


Esquema básico de uma junção Josephson

Brian David Josephson previu que seria possível o tunelamento de pares de Cooper entre dois supercondutores separados por uma distância menor que 10 Å, na ausência de uma voltagem externa. A confirmação experimental de sua previsão veio no ano de 1963 por Anderson e Rowell. Uma junção Josephson é formada por dois supercondutores fracamente acoplados através de uma fina película isolante. A película pode ser feita a partir da oxidação do filme da base ou pela deposição de camadas adicionais de um metal oxidado, de um semicondutor ou de um metal normal. Quando utilizado material isolante, a espessura da barreira é de alguns nanômetros. Para uma barreira feita de material semicondutor ou normal, ela possui espessura de 10 a 100 vezes maior.
No SQUID, a corrente que entra no dispositivo é dividida em duas componentes que atravessam as duas JJ na forma de correntes de pares de Cooper. Quando o SQUID é submetido a um campo magnético, cada corrente varia periodicamente, passando por máximos consecutivos à medida que o fluxo magnético passa por múltiplos do quantum fundamental, . Dessa maneira, por meio de um circuito contador, pode-se determinar o número de máximos que a corrente atravessa e conhecer assim o fluxo magnético final.
Outra aplicação amplamente divulgada do SQUID é a magnetoencefalografia. Uma técnica que permite mapear o campo magnético gerado pela atividade cerebral, através de sensores que atuam em conjunto com um SQUID.





Para atingir sua temperatura ideal de condução, o cabo supercondutor é resfriado com nitrogênio líquido.[Imagem: Nexans]

        Apesar de alguns materiais apresentaram altas temperaturas críticas e elevadas densidades de corrente, um grande desafio está na confecção de fios. Os cupratos ainda são os campeões da TC, mas por serem materiais cerâmicos, ainda é impraticável substituir os comuns fios de cobre por supercondutores. Apesar disso, várias pesquisas estão dando ótimos resultados, como é o caso do maior cabo supercondutor do mundo. Instalado na Alemanha, unindo duas subestações na cidade de Ruhr e projetado para suportar uma carga de 40 MW (megawatts), o cabo será formado por seções concêntricas operando a 10.000 volts. Segundo engenheiros do Instituto de Tecnologia Karlsruhe, que projetaram o cabo, ele será o primeiro a incorporar um sistema de proteção contra sobrecargas, com limitador de corrente. O cabo supercondutor terá 1 km de extensão - para se ter uma ideia, o recorde mundial de intensidade de corrente elétrica foi batido com um cabo supercondutor de 30 metros de comprimento. (Fonte: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=maior-cabo-supercondutor-mundo)


Sistema de cabos supercondutores instalados em Nova York
Imagem da American Superconductor



Espectrômetro RMN da Oxford

        Esta técnica se baseia em gerar um campo magnético e orientar o spin dos núcleos (ou magnetização dos núcleos), após isto são gerados pulsos magnéticos que irão perturbar a magnetização dos spins e é medido o tempo que o spin demora para voltar à magnetização inicial. A intensidade do campo magnético necessária para orientar o núcleo dos átomos é obtida com o uso de supercondutores. No interior do equipamento, materiais supercondutores imersos em hélio líquido permitem gerar campos magnéticos altíssimos pela passagem de corrente elétrica.

LHC: Large Hadron Collider – Grande Colisor de Hádrons


Anel do LHC
       
        O Grande Colisor de Hádrons (LHC) do CentroEuropeu de Pesquisas Nucleares (CERN) é o maior acelerador de partículas do mundo. O LHC consiste de um anel de 27 km de magnetos supercondutores com uma série de estruturas de aceleração para aumentar a energia das partículas ao longo do caminho. O enorme campo magnético necessário para acelerar as partículas a altíssimas velocidades próximas à da luz é gerado a partir dos supercondutores.

Outras aplicações

Limitadores de corrente



Motor


MagLev – trens de levitação magnética







Separador magnético industrial



Pesquisas em fusão nuclear



        Ainda há muitas outras aplicações dos materiais supercondutores que não foram mencionadas aqui. A maioria delas não faz parte do cotidiano do cidadão comum, como a computação quântica, por exemplo. É provável que nos próximos 20 anos a supercondutividade se aproxime mais da vida cotidiana e traga maiores benefícios pra humanidade. Espero e torço para que pesquisadores brasileiros tenham grande contribuição nesta jornada.

quarta-feira, 29 de maio de 2013

A desconhecida contribuição de Linus Pauling (Linus Pauling contributions for superconductivity)


Apesar de pouco conhecido, Linus Carl Pauling publicou quatro trabalhos em supercondutividade e depositou duas patentes. Em cada um deles, Pauling utilizou sua teoria da ressonância não-sincronizada das ligações covalentes para descrever o estado supercondutor em termos do mecanismo da transferência de elétrons.


Sua teoria RVB foi formulada em 1949 e seu primeiro artigo contemplando a supercondutividade foi publicado em 1968. Em comparação com outras teorias, os trabalhos de Pauling não alcançaram visibilidade equivalente. Dos quatro artigos publicados por ele, o que teve maior repercussão possui 88 citações e versa qualitativamente a respeito dos high-TC. Nele, Pauling descreve a supercondutividade nos cupratos como o resultado de uma combinação apropriada de diversos fatores, tais como: valência, eletronegatividade, raio atômico, interação crista-calha, etc. Nos demais artigos, Pauling demonstra a ocorrência da ressonância não-sincronizada no estado supercondutor e sua contribuição para o mesmo. Em seu ponto de vista, tanto a condutividade quanto a supercondutividade podem ser explicadas dentro do arcabouço teórico da RVB.


Para saber mais a respeito de seus trabalhos em supercondutividade, veja os seguintes textos:


1991: The structure of K3C60 and the mechanism of superconductivity. Proceedings of the National Academy of Sciences 88, pp. 9208-9209. Fonte: http://www.pnas.org/content/88/20/9208.full.pdf


1989: The role of the metallic orbital and of crest and trough superconduction in high temperature superconductors, em: R. M. Metzger (Ed.), High Temperature Superconductivity: The First Two Years, Gordon and Breach Scientific Publishers, New York, pp.309–313. Fonte: http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=7051968


1987: Influence of valence, electronegativity, atomic radii, and crest-trough interaction with phonons on the high-temperature copper oxide superconductors. Physical Review Letters 59, nº 2, pp. 225-227. Fonte: http://prl.aps.org/abstract/PRL/v59/i2/p225_1


1968: The ressonating-valence-bond theory of superconductivity: crest superconductors and trough superconductors. Proceedings of the National Academy of Sciences 60, pp. 59-65. Fonte: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC539129/


      1988: More Evidence about the Resonating-Covalent-Bond Theory of Electric Conduction and Superconduction (Fluxon Theory) and the Significance of Crest and Trough Superconductors and Hypoelectronic and Hyperelectronic Metals, February 28. (trabalho não publicado) Fonte: http://osulibrary.oregonstate.edu/specialcollections/coll/pauling/catalogue/pauling03_111-120.html


Para saber mais sobre a teoria RVB originalmente formulada por Pauling, recomendamos o artigo abaixo:


Costa, M. B. S.; Barros, K. A., A Teoria da Ressonância Não-Sincronizada das Ligações Covalentes. Revista Virtual de Química 2012, 4 (2), 130-145. Fonte: http://www.uff.br/RVQ/index.php/rvq/article/view/242/235


      As duas patentes depositadas por Pauling (veja abaixo) se referem a uma proposta de promover um aumento na temperatura crítica dos materiais supercondutores. Ele depositou várias outras em campos de pesquisa distintos, só citamos aqui aquelas de interesse.


1991: Method of Drawing Dissolved Superconductor, Patent No. 5,158,588, filed May 31, 1991. Fonte: http://www.patentbuddy.com/Patent/5158588


1990: Technique for Increasing the Critical Temperature of Superconducting Materials, Serial No. 07/626,723, filed December 12. Fonte: http://patentscope.wipo.int/search/en/WO1989012030


      “Por sua pesquisa na natureza da ligação química e sua aplicação para a elucidação da estrutura de substâncias complexas”, Pauling recebeu o prêmio Nobel de química em 1954. Anos depois recebeu o da paz em 1962. Entrou para a história da ciência como um dos maiores pesquisadores de todos os tempos e um pacificador de destaque. Para saber mais sobre sua obra, recomendamos o formidável link:



      Por fim, é oportuno destacar que o professor da UFPE, Antonio Carlos Pavão, desenvolve trabalhos com a teoria RVB desde a década de 80 e é o principal ícone do Brasil na área. Os diversos artigos do professor Pavão versam sobre magnetismo, supercondutividade, carcinogênese química, catálise, condutividade elétrica, etc. Em todos eles, a teoria RVB é empregada de modo a interpretar o fenômeno sob a óptica da transferência de elétrons. Recomendamos ao leitor ver os artigos do professor Pavão para um aprofundamento no tema.

Principal pesquisador brasileiro da teoria RVB

Entre em contato

Nome

E-mail *

Mensagem *

Supercondutividade ao seu alcance (clique na imagem)

Supercondutividade ao seu alcance (clique na imagem)
Nosso canal no YouTube!

Elementos supercondutores (clique na imagem)

Elementos supercondutores (clique na imagem)
Supercondutores à pressão ambiente e sobre altas pressões

Evolução da temperatura crítica (clique na imagem)

Heike Kamerlingh Onnes’s Discovery of Superconductivity

Heike Kamerlingh Onnes’s  Discovery of Superconductivity
Clique na imagem para acessar o artigo da Scientific American!

Room-Temperature Superconductivity

Room-Temperature  Superconductivity
Livro gratuito, clique na imagem para acessar!

O trem flutuante brasileiro!